Lecture08－ Conservation of Energy－I
簡紋濱
國立交通大學 理學院 電子物理系

CONTENTS

1. Nonisolated System - Other Energy Transfer
2. Isolated System
3. Energy Concept for Non-conservative forces - Kinetic Friction
4. Energy Quantization
5. Power

1. NONISOLATED SYSTEM - OTHER ENERGY TRANSFER

Energy transfer that we commonly use in the study:
Kinetic Energy: K
Potential Energy: U Note that work can be taken as the transfer media for different type of energy.
Internal Energy: $E_{\text {int }}$
Other ways of energy transfer, like work, across the system boundary:

- Mechanical Waves: $P=\frac{1}{2} \mu \omega^{2} A^{2} v, \mu$: mass per unit length, ω : angular velocity, A : amplitude, v : speed of the wave
- Heat: Q, Thermal Energy: $E=k_{B} T, k_{B}=1.38 \times 10^{-23}(\mathrm{~J} / \mathrm{K})$
- Matter Transfer
- Electrical Transmission - Electric Currents: $P=I V$
- Electromagnetic Radiation: $E=h v=h f, h=6.626 \times 10^{-34}(\mathrm{~J} \mathrm{~s})$
- Chemical Energy: battery
- Nuclear Energy: $E=m c^{2}, c=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})$

1. NONISOLATED SYSTEM - OTHER ENERGY TRANSFER

Example: The wavelength of visible light is between 400 and 700 nm . Please calculate the photon energy of light with a wavelength of 400 nm .

$$
\begin{aligned}
& \lambda=400 \times 10^{-9}(\mathrm{~m}) \\
& E=h f=h \frac{c}{\lambda}=6.626 \times 10^{-34} \times \frac{3 \times 10^{8}}{400 \times 10^{-9}}=4.97 \times 10^{-19}(\mathrm{~J})=3.10(\mathrm{eV})
\end{aligned}
$$

Example: Please calculate the thermal energy at 300 K .
$E=k_{B} T=1.38 \times 10^{-23} \times 300=4.14 \times 10^{-21}(J)=25.8(\mathrm{meV})$
Example: A typical nuclear fusion reaction is written ${ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\mathrm{n}$. How much energy is released in this fusion reaction?
rest mass energy: $E=m c^{2}$
$1875.613+2808.410-3727.379-939.565$
$\cong 17.1 \mathrm{MeV}$

Particle	Symbol	Rest Energy (MeV)
Neutron	n	939.565
Deuteron	d	1875.613
Triton	\dagger	2808.410
Helium-4	4 He	3727.379

1. NONISOLATED SYSTEM - OTHER ENERGY TRANSFER

Energy is one of several quantities in physics that are conserved. There are many physical quantities that do not have conservation feature.

Here we call the system energy $E_{\text {system }}$ is the total energy of the kinetic K, the potential U, and the internal $E_{\text {internal }}$ energy.
The change of system energy is expressed as: $\Delta E_{\text {system }}$
Other ways of energy transfer, such as mechanical waves or heat, are expressed as T_{i}. The symbol T means transfer.

The principle of conservation of energy is described by the conservation of energy equation as:

$$
\Delta E_{\text {system }}=\sum_{i=1}^{N} T_{i}
$$

The full expansion is: $\Delta K+\Delta U+\Delta E_{\text {int }}=W+Q+T_{M W}+T_{M T}+T_{E T}+T_{E R}$

2. ISOLATED SYSTEM

The work done by the gravitational force:
$\vec{F}=-\frac{G M m}{r^{2}} \hat{r} \quad U=-\int_{r_{i}}^{r_{f}}-\frac{G M m}{r^{2}} d r=\left[-\frac{G M m}{r}\right]_{r_{i}}^{r_{f}}$
$U_{f}-U_{i}=\Delta U=-\Delta W=-\Delta K=K_{i}-K_{f}$
$U_{i}+K_{i}=U_{f}+K_{f}$

Here we define the mechanical enegy of $E_{\text {mech }}=K+U$ The conservation of the mechanical energy is given as $-\frac{G M m}{r_{i}}+\frac{m v_{i}^{2}}{2}=-\frac{G M m}{r_{f}}+\frac{m v_{f}^{2}}{2}$

The principle of conservation of mechanical energy is:
$\Delta E_{\text {mech }}=\Delta U+\Delta K$

2. ISOLATED SYSTEM

The work done by the gravitational force near the Earth surface:
$\vec{F}=-m g \hat{k} \quad U=-\int_{z_{i}}^{z_{f}}-m g d z=[m g z]_{z_{i}}^{Z_{f}}$
$m g z_{i}+\frac{m v_{i}^{2}}{2}=m g z_{f}+\frac{m v_{f}^{2}}{2}$

The work done by the spring:
$\vec{F}=-k x \hat{x} \quad U=-\int_{x_{i}}^{x_{f}}-k x d x=\left[\frac{k x^{2}}{2}\right]_{x_{i}}^{x_{f}}$
$\frac{k x_{i}^{2}}{2}+\frac{m v_{i}^{2}}{2}=\frac{k x_{f}^{2}}{2}+\frac{m v_{f}^{2}}{2}$

2. ISOLATED SYSTEM

Example: A child of mass m is released from rest at the top of a slide, at height $\mathrm{h}=2.0$ m above the bottom of the slide. Assuming that the slide is frictionless, find the child's speed at the bottom of the slide.
$U_{i}+K_{i}=U_{f}+K_{f}$
$m g \times 2.0+0=0+\frac{m v_{f}^{2}}{2}$
$v_{f}=\sqrt{2 \times 2.0 \times 9.8}=6.26(\mathrm{~m} / \mathrm{s})$

2. ISOLATED SYSTEM

Example: A cat of mass m is released from a height of H . Please calculate its speed, when it is at a height of y.
$U_{i}+K_{i}=U_{f}+K_{f}$
$m g H+0=m g y+\frac{m v^{2}}{2}$
$v=\sqrt{2 g(H-y)}$

2. ISOLATED SYSTEM

Example: Two blocks are connected by a massless cord that passes over two frictionless pulleys. One end of the cord is attached to an object of mass $\mathrm{m}_{1}=3.00 \mathrm{~kg}$ that is a distance $L=1.20 \mathrm{~m}$ from the pulley on the left. The other end of the cord is connected to a block of mass $\mathrm{m}_{2}=6.00 \mathrm{~kg}$ resting on a table. From what angle must the 3.00 kg mass be released in order to just lift the 6.00 kg block off the table?

Let zero potential energy at the height where m_{1} is at the bottom.
$m g L(1-\cos \theta)+0=0+\frac{m v^{2}}{2}$
$v=\sqrt{2 g L(1-\cos \theta)}$
At the lowest position, the centripetal force and gravitation of m_{1} need to be larger than the gravitation of m_{2}.
$m_{1} g+m_{1} \frac{v^{2}}{L} \geq m_{2} g \quad m_{1} g+2 m_{1} g(1-\cos \theta) \geq m_{2} g$
$\cos \theta \leq \frac{3 m_{1}-m_{2}}{2 m_{1}} \quad \theta \geq \cos ^{-1}\left(\frac{3 m_{1}-m_{2}}{2 m_{1}}\right)=\frac{\pi}{3}$

2. ISOLATED SYSTEM

Example: A bead slides without friction around a loop-the-loop. The bead is released from a height $\mathrm{h}=3.50 \mathrm{R}$. (a) What is its speed at point A ? (b) How large is the normal force on it if its mass is 5.00 g ?
(a) Let zero energy of potential on the ground level.
$m g(2 R)+\frac{m v^{2}}{2}=m g(3.5 R)+0 \quad v=\sqrt{3 g R}$
(b) The centripetal force is the total force of the normal force and the gravitational force.
$m g+N=m \frac{v^{2}}{R}$
$N=2 m g=2 \times 0.00500 \times 9.8=0.098(\mathrm{~N})$

2. ISOLATED SYSTEM

Example: A pendulum is assembled by a sphere of mass m and a string of length L. It is released at an angle θ to the vertical. Please calculate its maximum speed.

Let the zero potential energy at O.
$0-m g L \cos \theta=\frac{m v^{2}}{2}-m g L$
$v=\sqrt{2 g L(1-\cos \theta)}$

https://giphy.com/gifs/cheezburger-cat-th-DP5bFAwGYLQha

CONTENTS

1. Nonisolated System - Other Energy Transfer
2. Isolated System
3. Energy Concept for Non-conservative forces - Kinetic Friction
4. Energy Quantization
5. Power

3. ENERGY CONCEPT FOR NONCONSERVATIVE FORCES - KINETIC FRICTION

Without Kinetic Friction

$$
W_{i}=\int \vec{F}_{i} \cdot d \vec{r} \quad \sum W_{i}=\int \sum \vec{F}_{i} \cdot d \vec{r}=\int \vec{F}_{n e t} \cdot d \vec{r}=\Delta K
$$

Put The Kinetic Friction into The System. The kinetic energy is lower

$$
\sum W_{i}+\int \vec{f}_{k} \cdot d \vec{r}=\int \sum \vec{F}_{i} \cdot d \vec{r}+\int \vec{f}_{k} \cdot d \vec{r}=\int \vec{F}_{n e t} \cdot d \vec{r}=\Delta K
$$

Clarify the work done by kinetic friction, since \vec{f}_{k} is always opposite to the displacement $d \vec{r}$, after working for a distance $d, \int \vec{f}_{k} \cdot d \vec{r}=-f_{k} d$
$\sum W_{i}-f_{k} d=\Delta K$

3. ENERGY CONCEPT FOR NONCONSERVATIVE FORCES - KINETIC FRICTION

$\sum W_{i}-f_{k} d=\Delta K$
When no other work is done on the system, $\sum W_{i}=0,-f_{k} d=\Delta K$
The kinetic energy is transferred to the friction and the frictional force do work to increase heat and atomic vibration at the interface $f_{k} d=\Delta E_{\text {int }}$.

Put the potential energy into the mechanical energy
$\Delta E_{\text {mech }}=\Delta U+\Delta K=-f_{k} d=-\Delta E_{\text {int }}$
If no other work or energy transfer exists, the conservation of energy is
$\Delta U+\Delta K+f_{k} d=0$
$\Delta U+\Delta K+\Delta E_{\text {int }}=0$

3. ENERGY CONCEPT FOR NONCONSERVATIVE FORCES - KINETIC FRICTION

Example: A car traveling at a speed v slides a distance d to a complete stop after the driver brakes. If the car's initial speed is doubled to $2 v$, please estimate the distance it slides.
$\Delta U+\Delta K+f_{k} d=0, \Delta U=0$
$\frac{m v^{2}}{2}+0=0+f_{k} d \quad \longleftrightarrow f_{k}=\frac{m v^{2}}{2 d}$
When the initial speed is doubled and the frictional force remains the same, the final distance d^{\prime} is:
$v^{\prime}=2 v, \frac{m(2 v)^{2}}{2}+0=0+f_{k} d^{\prime}$
$d^{\prime}=\frac{1}{f_{k}} 2 m v^{2}=\frac{2 d}{m v^{2}} 2 m v^{2}=4 d$

3. ENERGY CONCEPT FOR NONCONSERVATIVE FORCES - KINETIC FRICTION

Example: A block of mass $\mathrm{m}=1.60 \mathrm{~kg}$ is attached to a horizontal spring that has a force constant of $\mathrm{k}=1.00 \times 10^{3} \mathrm{~N} / \mathrm{m}$. The spring is compressed $\mathrm{d}=2.00 \mathrm{~cm}$ and it is then released from rest. Calculate the speed of the block as it passes through the equilibrium position if a constant friction force of $f_{k}=4.00 \mathrm{~N}$ retards its motion from the moment it is released.

$$
\begin{aligned}
& \Delta U+\Delta K+f_{k} d=0 \\
& \frac{k d^{2}}{2}+0+0=0+\frac{m v^{2}}{2}+f_{k} d \\
& v=\sqrt{\frac{2}{m}\left(\frac{k d^{2}}{2}-f_{k} d\right)}=\sqrt{\frac{2}{1.60}\left(\frac{1.00 \times 10^{3} \times(0.02)^{2}}{2}-4 \times 0.02\right.} \begin{array}{l}
v=0.387(\mathrm{~m} / \mathrm{s})
\end{array}
\end{aligned}
$$

3. ENERGY CONCEPT FOR NONCONSERVATIVE FORCES - KINETIC FRICTION

Example: Two blocks are connected by a light cord. The block of mass m_{1} is connected to a spring of force constant k . The system is released from rest when the spring is unstreched. If the block of mass m_{2} falls a distance of h before coming to rest, calculate the coefficient of kinetic friction between the block of mass m_{1} and the table surface.
$\Delta U_{1}+\Delta U_{2}+f_{k} d=0$
$0+m_{2} g h+0=\frac{k h^{2}}{2}+0+f_{k} h \quad f_{k}=m_{1} g \mu_{k}$
$\mu_{k}=\frac{m_{2} g h-\frac{k h^{2}}{2}}{m_{1} g h}$

3. ENERGY CONCEPT FOR NONCONSERVATIVE FORCES - KINETIC FRICTION

Example: A 2.0 kg block slides along a floor with speed $v_{1}=4.0 \mathrm{~m} / \mathrm{s}$. It then runs into and compresses a spring, until the block momentarily stops. Its path to the initially relaxed spring is frictionless, but as it compresses the spring, a kinetic frictional force of magnitude 15 N acts on it. The spring constant is $10,000 \mathrm{~N} / \mathrm{m}$. By what distance d is the spring compressed when the package stops?

$$
\begin{aligned}
& \Delta U+\Delta K+f_{k} d=0 \\
& 0+\frac{m v^{2}}{2}+0=\frac{k d^{2}}{2}+0+f_{k} d \\
& \frac{2.0 \times(4.0)^{2}}{2}=\frac{10000 d^{2}}{2}+15 d \\
& 5000 d^{2}+15 d-16=0, d \cong 0.056(\mathrm{~m})
\end{aligned}
$$

4. ENERGY QUANTIZATION

1. Hydrogen Atom

$$
\frac{2 \pi r}{\lambda}=n \rightarrow k r=n \rightarrow \hbar k r=n \hbar
$$

$F=m \frac{v^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}} \rightarrow m v r=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{v} \rightarrow v=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{n \hbar} \rightarrow r=\frac{n \hbar}{m v}=n^{2} \frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}$
$E=\frac{1}{2} m v^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}=-\frac{1}{2} m v^{2} \rightarrow E_{n}=-\frac{m}{2}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar}\right)^{2} \frac{1}{n^{2}}$
2. Particle in a Box

$$
\begin{aligned}
& n \frac{\lambda}{2}=a \rightarrow \frac{2 \pi}{\lambda} a=n \pi \\
& E=\frac{p^{2}}{2 m}=\frac{k^{2} \hbar^{2}}{2 m} \quad E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}
\end{aligned}
$$

hydrogen spectral tube

4. ENERGY QUANTIZATION

3. Quantum Harmonic Oscillator

$$
\begin{aligned}
& F=-k x=m a \rightarrow \omega=\sqrt{\frac{k}{m}} \\
& E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
\end{aligned}
$$

https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
4. Light, Electromagnetic Waves, Photons
$E_{n}=n h f$

5. POWER

Average Power: $P_{\text {avg }}=\frac{\Delta W}{\Delta t} \quad, \Delta W$: work
Instantaneous Power: $P=\lim _{t \rightarrow 0} \frac{\Delta W}{\Delta t}=\frac{d W}{d t}$
Related to force and velocity: $P=\frac{d W}{d t}=\frac{\vec{F} \cdot d \vec{r}}{d t}=\vec{F} \cdot \frac{d \vec{r}}{d t}=\vec{F} \cdot \vec{v}$
The unit of power: $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{3}$

One horsepower (hp) is 746 W . Typically, the engine power of a sedan is about $150 \mathrm{hp}(112 \mathrm{~kW}$). The other important spec is engine torque.
The unit used for electric power plant or for the electric bill is
kilowatt-hour $=1000 \mathrm{~W} \times 1 \mathrm{~h}=1000 \mathrm{~W} \times 3600 \mathrm{~s}=3.6 \times 10^{6} \mathrm{~J}$
The kW-h is an unit of enrgy, not power.

5. POWER

Example: A $1000-\mathrm{kg}$, gasoline-powered car is running at a constant speed of $100 \mathrm{~km} / \mathrm{h}$ up a 10 -percent grade. (a) If the efficiency of the car engine is 15%, what is the rate at which the chemical energy of the car engine changes?
ten percent grade (slope, incline): $\tan \theta=10 \%=0.1, \theta \cong 5.71^{0}$
the sliding force of the car on the grade is $m g \sin \theta=$ $1000 \times 9.8 \times \sin 5.71^{\circ}=975 \mathrm{~N}$
the power to push the car is $P=F v=975 \mathrm{~N} \times 100\left(\frac{\mathrm{~km}}{\mathrm{~h}}\right)$
$P=975 \times \frac{100}{3.6}=27.1 \mathrm{~kW}$
It is only 15% of the engine power so the engine power is
$P_{\text {eng }}=\frac{27.1}{0.15}=181 \mathrm{~kW}$

ACKNOWLEDGEMENT

國立交通大學理學院自主愛學習計畫

【科技部補助】

