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Lecture 01 Mathematics 

The content in Lecture 01 can be partially found in Appendix B in Serway/Jewett’s 

textbook of “Physics for Scientists and Engineers with Modern Physics”. 

 

In this lecture, we will review background knowledge of mathematics used in physics. 

We help to review what you learned in senior high school and introduce you new, 

applied mathematics of differentiation, integration, Taylor’s expansion, a simple 1st 

order differential equation, and a 2nd order differential equation. 

 

1.1 Quadratic Equation 
Sometimes you may use a variable and find a relation forming a quadratic equation 

for solving the variable. For example, you assume the distance be the variable 𝑥 and 

you find the relation of 𝑏𝑥 = −𝑐 − 𝑎𝑥2. Thus, you get a quadratic equation 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

Solve it, you may go through the step 

𝑥2 +
𝑏

𝑎
𝑥 + (

𝑏

2𝑎
)

2

= (
𝑏

2𝑎
)

2

−
𝑐

𝑎
. 

Finally, you obtain 

𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
. 

The following graph gives you a concept of solving the equation of 𝑥2 + 𝑥 − 2 = 0. 

The solutions tell us the interception points of the two functions, 𝑦(𝑥) = 𝑓(𝑥) = 0 

and 𝑦(𝑥) = 𝑓(𝑥) = 𝑥2 + 𝑥 − 2. 

 

1.2 Linear Equations 
If you have more than one variables, you need to have the same number of equations 

to find the solution of variables. For example, we have two variables 𝑥 and 𝑦, 

satisfying the following two equations. 

𝑦 = 𝑓(𝑥)

𝑦 = 𝑓(𝑥)
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𝑦 − 𝑥 = 2 

3𝑥 − 2𝑦 = 8 

We first put the equations into standard form 

𝑥 − 𝑦 = −2 

3𝑥 − 2𝑦 = 8, 

and use the Cramer’s rule (formula of determinants) to find values for the two 

variables. 

𝑥 =
|
−2 −1
8 −2

|

|
1 −1
3 −2

|
=

12

1
= 12 

𝑦 =
|
1 −2
3 8

|

|
1 −1
3 −2

|
=

14

1
= 14 

Use determinant formula to sole a system of equations for three variables 𝑥, 𝑦 and 𝑧: 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1 

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2 

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3 

The determinant formula gives you the solutions such as 

𝑥 =

|

𝑑1 𝑏1 𝑐1

𝑑2 𝑏2 𝑐2

𝑑3 𝑏3 𝑐3

|

|

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|

 

The following graph draws lines of two equations with an interception point of a 

solution given by the determinant formula. 
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1.3 Binomial Series 
The following figure shows Pascal’s triangle which gives you coefficients in the 

expansion of (𝑥 + 1)𝑛. 

 

(𝑥 + 1)2 = (𝑥 + 1)(𝑥 + 1) = 𝑥2 + 2𝑥 + 1 = 𝐶2
2𝑥2 + 𝐶1

2𝑥1 + 𝐶0
2𝑥0 

(𝑥 + 1)𝑛 = 𝐶𝑛
𝑛𝑥𝑛 + 𝐶𝑛−1

𝑛 𝑥𝑛−1 + 𝐶𝑛−2
𝑛 𝑥𝑛−2 + ⋯ 

(𝑥 + 1)𝑛 = 𝑥𝑛 + 𝑛𝑥𝑛−1 +
𝑛(𝑛 − 1)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑥3 + ⋯ 

1.4 Power & Exponent 
2𝑚 ∙ 2𝑛 = 2𝑚+𝑛 

20 = 𝑥0 = 1 

𝑥𝑚 = 𝑥𝑚−𝑛 ∙ 𝑥𝑛 

𝑚 = 0 → 1 = 𝑥−𝑛𝑥𝑛 → 𝑥−𝑛 =
1

𝑥𝑛
 

𝐴 ∙ 𝐴 = 𝑥 = 𝑥
1
2𝑥

1
2 → 𝐴 = 𝑥

1
2 = √𝑥 
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1.5 Logarithms 
𝑦 = 𝑎𝑥 

𝑥 = 𝑙𝑜𝑔𝑎(𝑦) 

100 = 102 

𝑙𝑜𝑔10(100) = 2 

𝑙𝑜𝑔10(1) = 0 

𝑦1 = 𝑎𝑥, 𝑦2 = 𝑎𝑦 

𝑦1𝑦2 = 𝑎𝑥𝑎𝑦 = 𝑎𝑥+𝑦 

log𝑎(𝑦1𝑦2) = 𝑥 + 𝑦 = loga(𝑦1) + loga(𝑦2) 

𝑒 = 2.718281828459045 

 

1.6 Trigonal Functions 

 

Trigonometric Identities 

𝑠𝑖𝑛(𝐴 ± 𝐵) 

= 𝑠𝑖𝑛𝐴𝑐𝑜𝑠𝐵 ± 𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵 

cos(𝐴 ± 𝐵) 

= 𝑐𝑜𝑠𝐴𝑐𝑜𝑠𝐵 ∓ 𝑠𝑖𝑛𝐴𝑠𝑖𝑛𝐵 

𝑠𝑖𝑛(𝜋 − 𝜃) = 𝑠𝑖𝑛𝜃 

𝑐𝑜𝑠(𝜋 − 𝜃) = −𝑐𝑜𝑠𝜃 
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𝑠𝑖𝑛 (
𝜋

2
− 𝜃) = 𝑐𝑜𝑠𝜃 

𝑠𝑖𝑛(𝐴) = 𝑠𝑖𝑛 (
𝐴 + 𝐵

2
+

𝐴 − 𝐵

2
) 

𝑠𝑖𝑛(𝐴) = 𝑠𝑖𝑛 (
𝐴 + 𝐵

2
) 𝑐𝑜𝑠 (

𝐴 − 𝐵

2
) + 𝑐𝑜𝑠 (

𝐴 + 𝐵

2
) 𝑠𝑖𝑛 (

𝐴 − 𝐵

2
) 

𝑠𝑖𝑛(𝐵) = 𝑠𝑖𝑛 (
𝐴 + 𝐵

2
) 𝑐𝑜𝑠 (

𝐴 − 𝐵

2
) − 𝑐𝑜𝑠 (

𝐴 + 𝐵

2
) 𝑠𝑖𝑛 (

𝐴 − 𝐵

2
) 

𝑠𝑖𝑛(𝐴) + 𝑠𝑖𝑛(𝐵) = 2𝑠𝑖𝑛 (
𝐴 + 𝐵

2
) 𝑐𝑜𝑠 (

𝐴 − 𝐵

2
) 

 

1.7 Differential Calculus 

 

Differential and integral calculation are especially designed for expressing particles in 

motion. For example, a constant speed motion in one-dimensional space is described 

by the function of position 𝑋 as a function of time 𝑡, referring to the left panel in the 

figure above. The constant velocity of the motion can be derived as 

𝑣𝑎𝑣𝑔 =
∆𝑥

∆𝑡
=

𝑥2 − 𝑥1

𝑡2 − 𝑡1
=

𝑥(𝑡2) − 𝑥(𝑡1)

𝑡2 − 𝑡1
= 𝑣0. 

The calculation is similar to finding the slope of a line or curve as shown in the right 

panel of the figure shown above and the slope can be expressed as 
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𝑚 =
∆𝑦

∆𝑥
=

𝑦(𝑥2) − 𝑦(𝑥1)

𝑥2 − 𝑥1
. 

On the other hand, a particle under a constant acceleration motion gives you similar 

concepts. 

 

The differentiation is just the way to calculate the slope between two points on the 

curve while moving the two points approaching as closely as possible. Thus, the slope 

of the two points turns out to be the slope of a tangent line at the two approaching 

points. 

The definition of the differential calculation of a function is given as 

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑓′(𝑥) = lim

∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

Let’s use this definition to find out slopes of power functions. The first kind of basic 

functions is the power function 𝑓(𝑥) = 𝑥𝑛. 

𝑑𝑓(𝑥)

𝑑𝑥
= lim

∆𝑥→0

(𝑥 + ∆𝑥)𝑛 − 𝑥𝑛

∆𝑥
= lim

∆𝑥→0

𝑥𝑛 + 𝐶1
𝑛𝑥𝑛−1(∆𝑥) + 𝐶2

𝑛𝑥𝑛−2(∆𝑥)2 + ⋯ − 𝑥𝑛

∆𝑥
 

𝑑𝑓(𝑥)

𝑑𝑥
= lim

∆𝑥→0
(𝑛𝑥𝑛−1 + 𝐶2

𝑛𝑥𝑛−2(∆𝑥) + ⋯ ) = 𝑛𝑥𝑛−1 

If we know that for very small 𝜃, the sine and cosine functions of 𝜃 have the 

relations of sin(𝜃) ≅ 𝜃 and cos(𝜃) ≅ 1. We can then derive the slope of sine and 

cosine functions. They are the second kind of basic functions. 

𝑑

𝑑𝑥
(sin(𝑥)) = lim

∆𝑥→0

sin(𝑥 + ∆𝑥) − sin(𝑥)

∆𝑥
 

= lim
∆𝑥→0

sin(𝑥) cos(∆𝑥) + cos(𝑥) sin(∆𝑥) − sin(𝑥)

∆𝑥
 

= lim
∆𝑥→0

sin(𝑥) ∙ 1 + cos(𝑥) ∙ (∆𝑥) − sin(𝑥)

∆𝑥
= cos(𝑥) 

 



 7 

𝑑

𝑑𝑥
(cos(𝑥)) = lim

∆𝑥→0

cos(𝑥 + ∆𝑥) − cos(𝑥)

∆𝑥
 

= lim
∆𝑥→0

cos(𝑥) cos(∆𝑥) − sin(𝑥) sin(∆𝑥) − cos(𝑥)

∆𝑥
 

= lim
∆𝑥→0

cos(𝑥) ∙ 1 − sin(𝑥) ∙ (∆𝑥) − cos(𝑥)

∆𝑥
= − sin(𝑥) 

 

The product and quotient rules are commonly used in differentiation. They are 

expressed as follows. 

𝑑

𝑑𝑥
(𝑓(𝑥)𝑔(𝑥)) =

𝑑𝑓(𝑥)

𝑑𝑥
𝑔(𝑥) + 𝑓(𝑥)

𝑑𝑔(𝑥)

𝑑𝑥
 

 

𝑑

𝑑𝑥
(

𝑓(𝑥)

𝑔(𝑥)
) =

𝑑

𝑑𝑥
(𝑓(𝑥)(𝑔(𝑥))

−1
) 

=
𝑑𝑓(𝑥)

𝑑𝑥
(𝑔(𝑥))

−1
+ 𝑓(𝑥) (−(𝑔(𝑥))

−2 𝑑𝑔(𝑥)

𝑑𝑥
) 

=

𝑑𝑓(𝑥)
𝑑𝑥

𝑔(𝑥) − 𝑓(𝑥)
𝑑𝑔(𝑥)

𝑑𝑥

(𝑔(𝑥))
2  

We can use the quotient rule to derive the differential of tan(𝑥). 

𝑑

𝑑𝑥
(

sin(𝑥)

cos(𝑥)
) =

cos(𝑥) cos(𝑥) − (− sin(𝑥)) sin(𝑥)

cos2(𝑥)
= sec2(𝑥) 

The last rule that is commonly used in calculus is the chain rule. 

𝑑𝑓(𝑔(𝑥))

𝑑𝑥
=

𝑑𝑓(𝑔)

𝑑𝑔

𝑑𝑔(𝑥)

𝑑𝑥
 

 

1.8 Partial Differential 
For a function of two more variables, we can either do complete or partial differential 

calculation. The complete and partial differential of a function 𝑓(𝑥, 𝑦) are denoted as 

𝑑𝑓(𝑥,𝑦)

𝑑𝑥
 and 

𝜕𝑓(𝑥,𝑦)

𝜕𝑥
. 

For the partial differentiation, we take other variables as constants. It means that the 

variables, like 𝑥 and 𝑦, are independent. For the complete differentiation, we need 

to consider the variables have functional dependences such as 𝑦 = 𝑦(𝑥). 

 

We learn functional dependences for functions. When we use coordinate system, we 

prefer to use orthogonal coordinates. That means the variables 𝑥, 𝑦 and 𝑧 are 

independent. In such an orthogonal and independent variable system, we can easily 
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treat differentiation and integration. 

 

We illustrate by using a function 𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦 + 𝑦2. The complete 

differentiation gives the result of 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
= 2𝑥 + 2𝑦 + 2𝑥

𝑑𝑦

𝑑𝑥
+ 2𝑦

𝑑𝑦

𝑑𝑥
= (2𝑥 + 2𝑦) + (2𝑥 + 2𝑦)

𝑑𝑦

𝑑𝑥
 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= 2𝑥 + 2𝑦 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= 2𝑥 + 2𝑦 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
=

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥

𝑑𝑥

𝑑𝑥
+

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦

𝑑𝑦

𝑑𝑥
 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
=

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦

𝑑𝑦

𝑑𝑥
 

The idea can be generalized for three variable functions. 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
=

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦

𝑑𝑦

𝑑𝑥
+

𝜕𝑓(𝑥, 𝑦)

𝜕𝑧

𝑑𝑧

𝑑𝑥
 

 

1.9 Taylor Expansion 
After we learned the differentiation, we can use it as a first order, linear 

approximation. 

𝑓(𝑥) ≅ 𝑓(𝑥0) +
𝑑𝑓(𝑥)

𝑑𝑥 𝑥=𝑥0

(𝑥 − 𝑥0) 

The idea is the same as finding the coefficients 𝑐0 and 𝑐1 of the linear 

approximation equation 

𝑓(𝑥) ≅ 𝑐0(𝑥 − 𝑥0)0 + 𝑐1(𝑥 − 𝑥0). 

The Taylor expansion is just a higher order approximation of the polynomial function. 

𝑓(𝑥) ≅ 𝑐0(𝑥 − 𝑥0)0 + 𝑐1(𝑥 − 𝑥0)1 + 𝑐2(𝑥 − 𝑥0)2 + 𝑐3(𝑥 − 𝑥0)3 + ⋯ 

If 𝑥 is very close to 𝑥0, we cannot tell any difference between the real 𝑓(𝑥) and the 

Taylor expansion. The coefficients in Taylor expansion are just higher order 

differentials. 

𝑐0 = 𝑓(𝑥)𝑥=𝑥0
 

𝑐1 =
1

1!

𝑑𝑓(𝑥)

𝑑𝑥 𝑥=𝑥0

 

𝑐2 =
1

2!

𝑑2𝑓(𝑥)

𝑑𝑥2
𝑥=𝑥0

 

𝑐2 =
1

3!

𝑑3𝑓(𝑥)

𝑑𝑥3
𝑥=𝑥0
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The factorial 𝑛! is related to the differential of the corresponding power function. 

If the original function is polynomial, we can use Taylor expansion to find exactly the 

same original function. For example, the function 𝑓(𝑥) = 𝑥2 + 2𝑥 is a polynomial 

function and its derivatives are 
𝑑𝑓

𝑑𝑥
= 2𝑥 + 2, 

𝑑2𝑓

𝑑𝑥2 = 2, and 
𝑑𝑛𝑓

𝑑𝑥𝑛 𝑛≥3 = 0. We can find 

the original function using Taylor expansion approximation if we know values of the 

function and all derivatives of the function. For example, when we know 𝑓(3) = 15, 

𝑓′(3) = 8, 𝑓(2)(3) = 2, and 𝑓(𝑛)(3)𝑛≥3 = 0, we can use Taylor’s expansion to 

obtain 

𝑓(𝑥) ≅ 𝑓(𝑥0) +
1

1!

𝑑𝑓(𝑥)

𝑑𝑥 𝑥=𝑥0

(𝑥 − 𝑥0) +
1

2!

𝑑2𝑓(𝑥)

𝑑𝑥2
𝑥=𝑥0

(𝑥 − 𝑥0)2 + ⋯. 

𝑓(𝑥) = 15 + 8(𝑥 − 3) +
2

2!
(𝑥 − 3)2 + 0 

𝑓(𝑥) = 𝑥2 + 2𝑥 

The function obtained from Taylor expansion is exactly the same as the original 

function since it’s a polynomial function. The most useful Taylor expansion equation 

is the expansion at 𝑥 = 0, given as follows. 

𝑓(𝑥) ≅ 𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓′′(0)

2!
𝑥2 +

𝑓′′′(0)

3!
𝑥3 +

𝑓4(0)

4!
𝑥4 + ⋯. 

When you learn Calculus, you will know the original definition of the exponential 

function 

𝑒𝑥 = lim
𝑛→∞

(1 +
𝑥

𝑛
)

𝑛

≅ 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ 

It is similar to the Taylor expansion result of the original function. With this 

definition, we can calculate the derivatives of the third kind of basic functions. 

𝑑

𝑑𝑥
𝑒𝑥 ≅ (

𝑑

𝑑𝑥
) (1 +

𝑥

1!
+

𝑥2

2!
+ ⋯ ) = 1 +

𝑥

1!
+

𝑥2

2!
+ ⋯ = 𝑒𝑥 

The fourth kind of basic function is the logarithm function loge(𝑥) = ln(𝑥). The 

philosophy is that we cannot differentiate the unknown function from unknown 

calculations. We shall use chain rule and the know derivative calculation so we 

change variable from 𝑥 to 𝑦. 

𝑦 = ln(𝑥) → 𝑥 = 𝑒𝑦 

(
𝑑

𝑑𝑥
) 𝑥 = (

𝑑

𝑑𝑥
) 𝑒𝑦 

Again, we cannot derive (
𝑑

𝑑𝑥
) 𝑒𝑦 so we turn to use chain rule. 

(
𝑑

𝑑𝑥
) 𝑥 = (

𝑑

𝑑𝑦
) (𝑒𝑦) 

𝑑𝑦

𝑑𝑥
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1 = 𝑒𝑦
𝑑𝑦

𝑑𝑥
→

𝑑𝑦

𝑑𝑥
= 𝑒−𝑦 =

1

𝑒𝑦
=

1

𝑥
 

𝑑 ln(𝑥)

𝑑𝑥
=

1

𝑥
 

We can also derive Taylor expansion of sinusoidal functions. 

sin(𝑥) ≅ sin(0) +
sin′(0)

1!
𝑥 +

sin′′(0)

2!
𝑥2 +

sin′′′(0)

3!
𝑥3 + ⋯ 

sin(𝑥) ≅ 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
± ⋯ 

cos(𝑥) ≅ cos(0) +
cos′(0)

1!
𝑥 +

cos′′(0)

2!
𝑥2 +

cos′′′(0)

3!
𝑥3 + ⋯ 

cos(𝑥) ≅ 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
± ⋯ 

 

1.10 Complex Numbers 
We usually met the problem when we solve the equations 𝑥2 = −1 and 𝑥2 = −𝑛. 

The numbers of ±√−1 seems not interactive with normal real numbers. We propose 

an independent relation between pure imaginary numbers (like √−1) and real 

numbers. The easiest independent variables are 𝑥 and 𝑦 variables on the 𝑥𝑦 

coordinate system. Here 𝑅 and 𝐼 are real numbers and pure imaginary numbers, 

respectively. The combination of real and imaginary numbers give you complex 

numbers. 

 

We usually denote the unit imaginary number √−1 as 𝑖. 

𝑖 = √−1 → 𝑖2 = −1, 𝑖3 = −𝑖, 𝑖4 = 1, … 

√−5 = √5 ∙ √−1 = √5𝑖 

Now we introduce a notation 𝑒𝑖𝑥 to denote the unit complex number. 

𝑒𝑖𝑥 = 1 +
(𝑖𝑥)

1!
+

(𝑖𝑥)2

2!
+

(𝑖𝑥)3

3!
+

(𝑖𝑥)4

4!
+ ⋯ 
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𝑒𝑖𝑥 = (1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
± ⋯ ) + 𝑖 (

𝑥

1!
−

𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
± ⋯ ) 

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) 

We usually plot a circle of unit radius on the plane of complex numbers and replace 𝑥 

by 𝜃 shown in the figure above. It is clear that the real part of 𝑒𝑖𝜃 is like the 

projection component of cos(𝜃) on the axis of real numbers. 

𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) 

We also use this notation to change the normal expression of a complex number 𝑎 +

𝑖𝑏, where 𝑎 and 𝑏 are two real numbers, to the notation of 𝑟 𝑒𝑖𝜃. 

 

We can use the notation 𝑒𝑖𝜃 = cos(𝜃) + 𝑖 sin(𝜃) to derive again the addition rules 

for sinusoidal functions. 

 

𝑒𝑖(𝛼+𝛽) = cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽) 

= 𝑒𝑖𝛼 ∙ 𝑒𝑖𝛽 = (cos(𝛼) + 𝑖 sin(𝛼))(cos(𝛽) + 𝑖 sin(𝛽)) 

= (cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)) + 𝑖(sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽)) 

 

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) 

sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽) 

 

1.11 Integration 
The development of calculus (differentiation and integration) is directly related to 

Newton’s classical mechanics. Let’s start from the physics problem of an free falling 

object. For a free falling object, the acceleration is a constant 𝑔. We define the 

positive direction of the motion as the direction pointing to the center of the Earth. If 

we know the initial position and velocity of an object, we can find its following 

motion. 
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We know that the differential of velocity by time is the acceleration, denoted as 

𝑑𝑣(𝑡)

𝑑𝑡
= 𝑎(𝑡). For a free falling object, the acceleration is a constant and it is expressed 

as 𝑎(𝑡) = 𝑔. In the figure above, we show 𝑎(𝑡) (𝑎 − 𝑡 diagram) on the left panel 

and 𝑣(𝑡) (𝑣 − 𝑡 diagram) on the right panel. 

𝑑𝑣(𝑡)

𝑑𝑡
= 𝑎(𝑡) → 𝑑(𝑣(𝑡)) = 𝑎(𝑡)𝑑𝑡 = 𝑔𝑑𝑡 

The integration on the 𝑎 − 𝑡 diagram from 𝑡 = 0 to 𝑡 = 𝑡0 is just to estimate the 

area (𝑔𝑡0) under the curve. The area of the area on the 𝑎 − 𝑡 diagram gives you the 

difference of function values 𝑣(𝑡0) − 𝑣(0). The calculation procedure can be 

expressed by the integration shown here. 

∫ 𝑑𝑣
𝑣(𝑡0)

𝑣(0)=0

= ∫ 𝑔𝑑𝑡
𝑡0

0

 

𝑣(𝑡0) − 0 = 𝑔𝑡0 − 0 

𝑣(𝑡0) = 𝑔𝑡0 

𝑣(𝑡) = 𝑔𝑡 

 

 

The differential of position by time gives the velocity, denoted as 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑣(𝑡) = 𝑔𝑡. 

The integration on 𝑔 − 𝑡 diagram is to estimate the area under the line 𝑣(𝑡) = 𝑔𝑡. 

The area between 𝑡 = 0 and 𝑡 = 𝑡0 is 
1

2
(𝑡0)(𝑔𝑡0) =

𝑔𝑡0
2

2
. The procedure of 
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calculation is shown here. 

𝑑𝑥 = 𝑔𝑡𝑑𝑡 

∫ 𝑑𝑥
𝑥(𝑡0)

𝑥(0)=0

= ∫ 𝑔𝑡𝑑𝑡
𝑡0

0

 

[𝑥]𝑥=0
𝑥=𝑥(𝑡0)

= [
𝑔𝑡2

2
]

𝑡=0

𝑡=𝑡0

→ 𝑥(𝑡0) =
1

2
𝑔𝑡0

2 

𝑥(𝑡) =
1

2
𝑔𝑡2 

The important concept learned from the diagram is that a small variation of function 

𝑑(𝑓(𝑥)) is equal to multiplication of the slope function 
𝑑(𝑓(𝑥))

𝑑𝑥
 and the small 

variation 𝑑𝑥. 

𝑑𝑓(𝑥) =
𝑑𝑓(𝑥)

𝑑𝑥
𝑑𝑥 

The idea can be used to understand the chain rule. 

𝑑𝑓(𝑔(𝑥))

𝑑𝑥
=

𝑑𝑓(𝑔)

𝑑𝑔

𝑑𝑔(𝑥)

𝑑𝑥
→ 𝑑𝑓(𝑔(𝑥)) =

𝑑𝑓(𝑔)

𝑑𝑔

𝑑𝑔(𝑥)

𝑑𝑥
𝑑𝑥 

The variation of 𝑔 is equal to the multiplication of the slope 
𝑑𝑔(𝑥)

𝑑𝑥
 and the variation 

of 𝑥. Then, the variation of 𝑓 is equal to the multiplication of the slope 
𝑑𝑓(𝑔)

𝑑𝑔
 and 

the variation of 𝑔. 

Here we remind you the differential function of some basic functions. 

𝑓1(𝑥) = 𝑥𝑛 →
𝑑𝑓1(𝑥)

𝑑𝑥
= 𝑛𝑥𝑛−1 

𝑓2(𝑥) = sin(𝑥) →
𝑑𝑓2(𝑥)

𝑑𝑥
= cos(𝑥) 

𝑓3(𝑥) = 𝑒𝑥 →
𝑑𝑓3(𝑥)

𝑑𝑥
= 𝑒𝑥 

𝑓4(𝑥) = ln(𝑥) →
𝑑𝑓4(𝑥)

𝑑𝑥
=

1

𝑥
 

From the above differential calculation, we can find the variation of functions as 

follows. 

𝑑(𝑓1(𝑥)) = (𝑛𝑥𝑛−1)𝑑𝑥 → 𝑑(𝑥𝑛) = (𝑛𝑥𝑛−1)𝑑𝑥 

𝑑(𝑓2(𝑥)) = (cos(𝑥))𝑑𝑥 → 𝑑(sin(𝑥)) = (cos(𝑥))𝑑𝑥 

𝑑(𝑓3(𝑥)) = (𝑒𝑥)𝑑𝑥 → 𝑑(𝑒𝑥) = (𝑒𝑥)𝑑𝑥 

𝑑(𝑓4(𝑥)) = (
1

𝑥
) 𝑑𝑥 → 𝑑(ln(𝑥)) = (

1

𝑥
) 𝑑𝑥 
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The variations of functions give you integration results. 

∫ 𝑛𝑥𝑛−1𝑑𝑥
𝑥′

0

= ∫ 𝑑(𝑥𝑛)
𝑥′

0

= [𝑥𝑛]𝑥=0
𝑥=𝑥′

= 𝑥′𝑛
 

∫ 𝑥𝑛𝑑𝑥
𝑥′

0

= ∫ 𝑑 (
𝑥𝑛+1

𝑛 + 1
)

𝑥′

0

= [
𝑥𝑛+1

𝑛 + 1
]

𝑥=0

𝑥=𝑥′

=
𝑥′𝑛+1

𝑛 + 1
 

∫ cos(𝑥) 𝑑𝑥
𝑥′

0

= ∫ 𝑑(sin(𝑥))
𝑥′

0

= sin(𝑥′) 

∫ 𝑒𝑥𝑑𝑥
𝑥′

0

= ∫ 𝑑(𝑒𝑥)
𝑥′

0

= 𝑒𝑥′
− 𝑒0 

∫
1

𝑥
𝑑𝑥

𝑥′

1

= ∫ 𝑑(ln(𝑥))
𝑥′

1

= ln(𝑥′) − ln(1) 

The method of variations of functions can be used to solve more difficult calculations 

and it is slightly different from the method of changes of variables. 

∫
2𝑥

𝑥2 + 1
𝑑𝑥

𝑥′

0

= ∫
1

𝑥2 + 1
𝑑(𝑥2)

𝑥′

0

= ∫
1

𝑥2 + 1
𝑑(𝑥2 + 1)

𝑥′

0

= ∫ 𝑑(ln(𝑥2 + 1))
𝑥′

0

 

= ln(𝑥′2
+ 1) − ln(1) 

 

1.12 1st Order Differential Equation 
Physicists like to observe phenomena and find a mathematical expression to describe 

the phenomena. For example, it is observed that the growth rate of population is 

proportional to the population at that time. We express the population at time 𝑡 as 

𝑃(𝑡) thus the growth rate of population is 
𝑑𝑃(𝑡)

𝑑𝑡
. The observed phenomena just gives 

you an equation. 

𝑑𝑃(𝑡)

𝑑𝑡
∝ 𝑃(𝑡) →

𝑑𝑃

𝑑𝑡
= 𝑘𝑃 

The equation is the 1st order differential equation. It is usually accompanied by an 

initial condition of 𝑃(𝑡0) = 𝑃0 at 𝑡 = 𝑡0. 

To solve the 1st order differential equation, we can either try a solution or use the 

separation of variables. Here we show you the procedure of the separation of 

variables. Note that we have two variables 𝑃 and 𝑡 here. Try to put 𝑃 on the left 

and 𝑡 on the right of the equation. Then, integrate both sides to get the solution. 

𝑑𝑃(𝑡) = 𝑘𝑃(𝑡)𝑑𝑡 

𝑑𝑃(𝑡)

𝑃(𝑡)
= 𝑘𝑑𝑡 

𝑑𝑃

𝑃
= 𝑘𝑑𝑡 
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𝑑𝑃

𝑃
= 𝑘𝑑𝑡 

∫
𝑑𝑃

𝑃

𝑃(𝑡)

𝑃0

= ∫ 𝑘𝑑𝑡
𝑡

𝑡0

 

∫ 𝑑(ln(𝑃))
𝑃(𝑡)

𝑃0

= 𝑘 ∫ 𝑑𝑡
𝑡

𝑡0

 

[ln(𝑃)]𝑃=𝑃0

𝑃=𝑃(𝑡)
= 𝑘[𝑡]𝑡=𝑡0

𝑡=𝑡  

ln(𝑃(𝑡)) − ln(𝑃0) = 𝑘(𝑡 − 𝑡0) 

ln (
𝑃(𝑡)

𝑃0
) = 𝑘(𝑡 − 𝑡0) 

𝑃(𝑡)

𝑃0
= 𝑒𝑘(𝑡−𝑡0) 

𝑃(𝑡) = 𝑃0𝑒𝑘(𝑡−𝑡0) 

 

1.13 2nd Order Differential Equation 

 

When we study the oscillatory motion in Chapter 15, we will encounter the problem 

of solving the 2nd order differential equation. Let’s take a look at the phenomena. 

Assume a block of mass 𝑚 is attached on one end of a spring and the other end of 

the spring is fixed on the wall. When we pull the block a distance 𝑥 from its 

equilibrium position, the block will be exerted by a force −𝑘𝑥. We can write the 

force equation a and the resulting acceleration as 

𝐹 = −𝑘𝑥 = 𝑚𝑎. 

We know that the acceleration is dependent on the displacement and time as 

𝑎 =
𝑑𝑣

𝑑𝑡
= (

𝑑

𝑑𝑡
) 𝑣 = (

𝑑

𝑑𝑡
 ) (

𝑑𝑥

𝑑𝑡
) =

𝑑2𝑥

𝑑𝑡2
. 

The 2nd order differential equation is obtained. 

−𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
→ 𝑚

𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥 = 0 
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As a second step, we need to find solutions of the 2nd order differential equation 

𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑘𝑥 = 0. To solve it, we need to try a solution 𝑥(𝑡) = 𝐴 sin(𝐵𝑡). 

Put the trial solution into the differential equation to find any regulations for either 𝐴 

or 𝐵. 

𝑑𝑥

𝑑𝑡
= (

𝑑

𝑑𝑡
) (𝐴 sin(𝐵𝑡)) = 𝐴 (

𝑑(sin(𝐵𝑡))

𝑑(𝐵𝑡)
) (

𝑑(𝐵𝑡)

𝑑𝑡
) 

= 𝐴 cos(𝐵𝑡) 𝐵 = 𝐴𝐵 cos(𝐵𝑡) 

𝑑2𝑥

𝑑𝑡2
= 𝐴𝐵

𝑑 cos(𝐵𝑡)

𝑑(𝐵𝑡)

𝑑(𝐵𝑡)

𝑑𝑡
= −𝐴𝐵2 sin(𝐵𝑡) 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥 = 0 

→ 𝑚(−𝐴𝐵2 sin(𝐵𝑡)) + 𝑘𝐴 sin(𝐵𝑡) = 0 

𝐴 sin(𝐵𝑡) (𝑘 − 𝑚𝐵2) = 0 

𝑘 − 𝑚𝐵2 = 0 → 𝐵 = ±√
𝑘

𝑚
 

Here we choose 𝐵 = √
𝑘

𝑚
 and the solution is 𝑥(𝑡) = 𝐴 sin (√

𝑘

𝑚
𝑡). You can follow 

the same sequence to confirm that 𝑥(𝑡) = 𝐶 cos (√
𝑘

𝑚
𝑡) is another solution. The 

linear combination of both solutions are also a solution of the differential equation. 

The complete solution is given here. 

𝑥(𝑡) = 𝐴 sin (√
𝑘

𝑚
𝑡) + 𝐵 cos (√

𝑘

𝑚
𝑡) 

The solution can be rewritten as 

𝑥(𝑡) = 𝑅 sin (√
𝑘

𝑚
𝑡 + 𝜃) , 

where 𝑅 = √𝐴2 + 𝐵2 and tan(𝜃) =
𝐵

𝐴
. 

 

Exercise: 

1. Please draw the function x2 + (𝑦 − 𝑥
2

3)
2

= 1 on the 𝑥𝑦 plane. 

2. Please use Cramer’s rule to solve the system of differential equations: 2𝑥 − 𝑦 =

5, 𝑥 + 3𝑦 = −1. (𝑥 = 2, 𝑦 = −1) 
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3. Please use Cramer’s rule to solve the system of differential equations: 𝑥 + 𝑦 −

𝑧 = 1, 𝑥 + 𝑦 + 𝑧 = 2, 𝑥 − 𝑦 = 3. (𝑥 =
9

4
, 𝑦 = −

3

4
, 𝑧 =

1

2
) 

4. Please expand the term of (𝑥 + ∆𝑥)4. (𝑥4 + 4𝑥3(∆𝑥) + 6𝑥2(∆𝑥)2 + 4𝑥(∆𝑥)3 +

(∆𝑥)4) 

5. Use the relation of 
𝑑(𝑒𝑥)

𝑑𝑥
= 𝑒𝑥 and change of variables 𝑦 = 𝑒𝑥 → 𝑥 = ln(𝑦) to 

derive the equation 
𝑑(ln(𝑦))

𝑑𝑦
=

1

𝑦
. 

6. Please change the complex number 𝑎 + 𝑖𝑏 to 𝑟𝑒𝑖𝜃. Use 𝑎, 𝑏 to express 𝑟, 𝜃. 

(𝑟 = √𝑎2 + 𝑏2, 𝜃 = tan−1(𝜃)) 

7. Please use the relation for complex numbers of  sincos iei +=  to derive the 

expression of ( )  cossin22sin =  and cos(2𝜃) = cos2(𝜃) − sin2(𝜃). (𝑒𝑖2𝜃 =

𝑒𝑖𝜃𝑒𝑖𝜃 → cos(2𝜃) + 𝑖 sin(2𝜃) = (cos 𝜃 + 𝑖 sin 𝜃)2) 

8. Please use the differential operation of 
( ) ( ) ( )

( ) xxx

xfxxf

dx

xdf

x −+

−+
=

→ 0
lim  to find the 

total differential of 𝑥3 that is to evaluate 
𝑑(𝑥3)

𝑑𝑥
.  

9. Please calculate the derivative of the function 2𝑥3 + 4𝑥2 − 𝑥 − 5 with respect to 

the variable 𝑥. (6𝑥2 + 8𝑥 − 1) 

10. Please calculate the second derivative: 
𝑑2

𝑑𝑥2 (2𝑥3 + 3 + 5 ln(𝑥) +
4

𝑥2). (12𝑥 −

5

𝑥2 +
24

𝑥4) 

11. Please use the differential operation of 
( ) ( ) ( )

( ) xxx

xfxxf

dx

xdf

x −+

−+
=

→ 0
lim  to find the 

total differential of ( )xsin  that is to evaluate 
( )( )

dx

xd sin
. (Please note that for an 

infinitesimal x , ( ) 1cos x  and ( ) xx sin ) 

12. Please use the relations 
𝑑(sin(𝑥))

𝑑𝑥
= cos(𝑥) ,

𝑑(cos(𝑥))

𝑑𝑥
= − sin(𝑥) and the 

multiplication rules for differential operation to calculate 
𝑑(tan(𝑥))

𝑑𝑥
 and 

𝑑(sec(𝑥))

𝑑𝑥
. 

(sec2 𝑥 , sec 𝑥 tan 𝑥) 

13. Please use complete differential calculation to calculate 
𝑑

𝑑𝑥
(sin(cos(𝑥))), 

𝑑

𝑑𝑥
(𝑥2 + tan(𝑦(𝑥))). (− cos(cos(𝑥)) sin(𝑥) , 2𝑥 + sec2(𝑦)

𝑑𝑦

𝑑𝑥
) 
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14. Please use Taylor expansion to find the first three non-zero terms near 0=x  for 

the function ( ) ( )xxf sin= . (
x

1!
−

𝑥3

3!
+

𝑥5

5!
) 

15. For a given function 𝑓(𝑥) = 𝑥2 + 3𝑥 + 7, please calculate 

𝑓(1), 𝑓′(1), 𝑓′′(1), 𝑓′′′(1). Please use Taylor expansion and the values of 

𝑓(1), 𝑓′(1), 𝑓′′(1), 𝑓′′′(1) at 𝑥 = 1 to find the original function ( )xf  back. 

16. Please calculate the partial differential of 
𝜕

𝜕𝑥
(𝑥2𝑧 + 𝑥𝑦𝑧 + 𝑦2 + 8𝑧). (2𝑥𝑧 + 𝑦𝑧) 

17. Please use partial differential calculation to calculate 
𝜕

𝜕𝑥
(𝑥2 + tan(𝑦)), 

𝜕

𝜕𝑦
(𝑥2 + tan(𝑦)). (2𝑥, sec2(𝑦)) 

18. Please carry out the integration of ∫ (√𝑥 + 2𝑥2)
2

1
𝑑𝑥. (4 +

4√2

3
) 

19. Please calculate the integration ∫ cos(2𝑥) 𝑑𝑥
2𝜋

0
 and ∫ sin2(𝑥) 𝑑𝑥

2𝜋

0
. (0, 𝜋) 

20. Please calculate the integration of ∫ (sec2(𝑥) + cos(𝑥))𝑑𝑥
𝜋

4
0

. (1 +
√2

2
) 

21. Please calculate the integration ∫
𝑥

𝑥2+1
𝑑𝑥 and ∫ (2𝑥 + 2) cos(𝑥2 + 2𝑥) 𝑑𝑥

𝑥′

0
. 

(
1

2
ln(𝑥2 + 1) + 𝑐, sin(𝑥′2

+ 2𝑥′)) 

22. Please use the relation 
( ) x

x

e
dx

ed 3
3

3= (3𝑒3𝑥𝑑𝑥 = 𝑑(𝑒3𝑥)) to calculate the integral 

of  dxe x3 . (
𝑒3𝑥

3
+ 𝑐) 

23. Please use the relation 
( )

2

2

1

1

x

x

dx

xd

+
=

+
 (

𝑥

√1+𝑥2
𝑑𝑥 = 𝑑(√1 + 𝑥2)) to 

calculate the integral of 
+

dx
x

x

21
. (√1 + 𝑥2 + 𝑐) 

24. Please use the relation cos(𝑥) 𝑑𝑥 = 𝑑(sin(𝑥)) to calculate ∫ (cos(𝑥))3𝑑𝑥
𝑥=𝜋/2

𝑥=0
. 

(
2

3
) 

25. Please check that 𝑦(𝑥) = 𝐴𝑒−𝑏𝑥 is the solution of the 1st order differential 

equation 
𝑑𝑦

𝑑𝑥
+ 𝑏𝑦 = 0. 
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26. Please check that ( ) ( ) += tAtx cos  is a solution of the differential equation of 

02

2

2

=+ x
dt

xd
 . 

27. Please check that ( ) teNtN −= 0  is a solution of the differential equation 

( )
( )tN

dt

tdN
−= . 

28. The rate of the population 
dt

dP
 is proportional to its population P  as bP

dt

dP
= . 

The initial population at 0=t  is 0P . Please solve the first-order differential 

equation bP
dt

dP
=  to obtain ( )tP . 

 


