Lecture 07 Energy of a System

Energy approach to describe motion is especially useful when the force acting on the particle is not a constant.
Example: $\vec{F}=m \frac{d^{2} x}{d t^{2}}=-k x \rightarrow$ You need to solve the differential equation.
It would be much easier if you know the concept of energy and learn the energy conservation law.
$E=\frac{1}{2} k x^{2}+\frac{1}{2} m v^{2}=\frac{1}{2} k x_{\text {max }}^{2}=\frac{1}{2} m v_{\text {max }}^{2}$

7.1 Systems and Environments

Understand the system with its environment (system boundary).
A valid system may

1. be a single object or particle
2. be a collection of objects or particles
3. be a region of space (filling with gas or liquid, such as the interior of an automobile engine)
4. vary in size and shape (rubber ball)
$\mathrm{F}=0$
$m_{2} g-T=m_{2} a, T=m_{1}(a-A), \quad T=M A$
for $\mathrm{m}_{2}: \quad a=\frac{\left(M+m_{1}\right) m_{2} g}{M m_{1}+m_{1} m_{2}+m_{2} M}$
for M: $\quad A=\frac{m_{1} m_{2} g}{M m_{1}+m_{1} m_{2}+m_{2} M}$

7.2 Work Done by a Constant Force

$W=F S$
$W=(F \cos \theta) S$

7.3 The Scalar Product of Two Vectors

$\vec{A} \cdot \vec{B}=A B \cos \theta$
Commutative: $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
Distributive (associative): $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$
$\hat{i} \cdot \hat{i}=1,{ }_{_} \hat{j} \cdot \hat{j}=1, _\hat{k} \cdot \hat{k}=1, _\hat{i} \cdot \hat{j}=0,{ }_{_} \hat{i} \cdot \hat{k}=0,{ }_{-} \hat{j} \cdot \hat{k}=0$
$\vec{A} \cdot \vec{B}=A_{x} B_{x} \hat{i} \cdot \hat{i}+A_{y} B_{y} \hat{j} \cdot \hat{j}+A_{z} B_{z} \hat{k} \cdot \hat{k}$

Example: The vector \vec{A} and \vec{B} are given by $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=-\hat{i}+2 \hat{j}$.
Determine the scalar product $\vec{A} \cdot \vec{B}$. (b) Find the angle θ between A and B.

A force that turn your direction of motion does not transfer kinetic energy to

you. \rightarrow Separate them to motional and rotational energy.

Example: A particle moving in the xy plane undergoes a displacement $\Delta \vec{r}=(2.0 \hat{i}+3.0 \hat{j}) \mathrm{m}$ as a constant force $\vec{F}=(5.0 \hat{i}+2.0 \hat{j}) \mathrm{N}$ acts on the particle.

Example: Using the definition of the scalar product, find the angles between (a)
$\vec{A}=3 \hat{i}-2 \hat{j}$ and $\vec{B}=4 \hat{i}-4 \hat{j} ;$
(b) $\vec{A}=-2 \hat{i}+4 \hat{j}$
and
$\vec{B}=3 \hat{i}-4 \hat{j}+2 \hat{k}$
$\vec{A}=\hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{B}=3 \hat{j}+4 \hat{k}$.

Motion in One Dimension with Constant Forces

work: $W=\vec{F} \cdot \vec{S}$

Positive or Negative - What's difference?

Example: Figure shows two industrial spies sliding an initially stationary 225 kg floor safe a displacement \vec{d} of magnitude 8.50 m , straight toward their truck. The push \vec{F}_{1} of Spy 001 is 12.0 N , directed at an angle of 30° downward from the horizontal; the pull \vec{F}_{2} of Spy 002 is 10.0 N , directed at 40° above the horizontal. The magnitudes and directions of these forces do not change as the safe moves, and the floor and safe make frictionless contact.
$\sin 30^{\circ}=0.5, \cos 30^{\circ}=0.87, \sin 40^{\circ}=0.64, \cos 40^{\circ}=0.77$
$\vec{F}_{1}=12 \cdot \cos 30^{\circ} \hat{i}-12 \cdot \sin 30^{\circ} \hat{j}, \quad \vec{F}_{2}=10 \cdot \cos 40^{\circ} \hat{i}+10 \cdot \sin 40^{\circ} \hat{j}$
$\vec{F}=\vec{F}_{1}+\vec{F}_{2}=10.4 \hat{i}-6 \hat{j}+7.7 \hat{i}+6.4 \hat{j}=18.1 \hat{i}+0.4 \hat{j}$
$\vec{F} \cdot \vec{S}=(18.1 \cdot \hat{i}+0.4 \cdot \hat{j}) \cdot(8.5 \cdot \hat{i})=153.9$

7.4 Work Done by a Varying Force

$W \approx F_{x} \Delta x \rightarrow W \approx \sum_{x i}^{x f} F_{x} \Delta x \rightarrow \lim _{\Delta x \rightarrow 0} \sum_{x i}^{x f} F_{x} \Delta x=\int_{x i}^{x f} F_{x} d x$
$W=\int_{x i}^{x f} F(x) \cdot d x=\int_{r i}^{r f} \vec{F}(\vec{r}) \cdot d \vec{r}$
Example: Calculating Total Work Done from a Graph

(a)

$$
F_{x}=-k x
$$

Sprint on block: $W=\int_{x i}^{x f}-k x d x=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}$

Block on sprint: $W_{a p p}=\int_{x i}^{x f}-k x d x=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}$

Example: $\vec{F}=3 x^{2} \hat{i}+4 \hat{j}$ N, with x in meters, acts
on a particle, changing only the kinetic energy of the particle. How much work is done on the particle as it moves from coordinates ($2 \mathrm{~m}, 3 \mathrm{~m}$) to ($3 \mathrm{~m}, 0 \mathrm{~m}$)? Does the speed of the particle increase, decrease, or remain the same?
$\vec{r}_{i}=(2,3), \quad \vec{r}_{f}=(3,0), d \vec{r}=\hat{i} d x+\hat{j} d y, d W=\vec{F} \cdot d \vec{r}=\left(3 x^{2} \hat{i}+4 \hat{j}\right) \cdot(d x \hat{i}+d y \hat{j})$
$W=\int_{(2,3)}^{(3,0)} 3 x^{2} d x+4 d y=\int_{2}^{3} d\left[x^{3}\right]+\int_{3}^{0} d[4 y]=7$
The speed of the particle increase: $\frac{1}{2} m v_{f}^{2}=\frac{1}{2} m v_{i}^{2}+7$

Example: An archer pulls her bowstring back 0.400 m by exerting a force that increases uniformly from zero to 230 N . (a) What is the equivalent spring constant of the bow? (b) How much work does the archer do in pulling the bow?
(a) $F=-k x->230=k \cdot 0.4, k=575 \mathrm{~N} / \mathrm{m}$
(b) $W=\frac{1}{2} k x^{2}=\frac{1}{2} * 575 * 0.4^{2}=46 \mathrm{~J}$

Example: A small particle of mass m is pulled to the top of a frictionless half-cylinder (of radius R) by a cord that passes over the top of the cylinder. (a) If the particle moves at a constant speed, show that $\mathrm{F}=\mathrm{mgcos} \theta$. (Note: If the particle moves at constant
speed, the component of its acceleration tangent to the cylinder must be zero at all times.) (b) By directly integrating $\mathrm{W}=\int \mathrm{F} \cdot \mathrm{dr}$, find the work done in moving the particle at constant speed from the bottom to the top of the half-cylinder.
Hint (a): Draw the force graph, the force component that do work should be along the circle.
Hint (b): F is along the arc, the distance along the circle is $\mathrm{ds}=\mathrm{Rd} \theta$. Integrate from $\theta=0$ to $\theta=\theta$ to get the work done by the string.

7.5 Kinetic Energy and the Work-Kinetic

Energy Theorem

The Work-Kinetic Energy Theorem

work - a mechanism for transferring energy into a system
work-kinetic energy theorem: work transfer to kinetic energy in a non-isolated system

$W=\int F(x) \cdot d x=\int m a \cdot d x=\int m \frac{d v}{d t} \cdot d x, \frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}$
$W=\int m \frac{d v}{d x} v \cdot d x=\int m v \cdot d v=\int d\left[\frac{1}{2} m v^{2}\right]=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
kinetic energy $K=\frac{1}{2} m v^{2}$, work-kinetic energy theory: $W=\Delta K$
Example: A 6.0 kg block initially at rest is pulled to the right along a horizontal, frictionless surface by a constant force of 12 N . Find the speed of the block after it has moved 3.0 m .
Method 1:
$F=12=m a=6 \frac{d v}{d t} \rightarrow v^{2}=v_{0}^{2}+2 a s$
Method 2:
$F * s=\frac{1}{2} m v^{2}$
Example: Does the Ramp Lesson the Work Required?
$F=m g \sin \theta, \quad s=L=\frac{h}{\sin \theta}$
$\rightarrow W=F S=m g h$

7.6 Potential Energy of a System

As the objects undergoes the upward displacement by the applied force \vec{F}, you stored energy $W=\vec{F} \cdot \vec{h}=m g \hat{z} \cdot\left(y_{f}-y_{i}\right) \hat{z}$ in the system.

What happens? In the process work positive but the kinetic energy remains the same.
Ans: work done by external forces is transformed to potential energy (stored in potential energy)

$$
U=m g y, \quad W=\Delta U_{g}
$$

(a)

(b)

Potential energy of the system is increased by work of external force.

Two kinds of typical potential energy: gravitational potential energy, elastic potential energy.

Potential Energy of a Spring

$\vec{F}=-k \vec{d}$
$F=-k x, d W=F(x) d x, d W=-k x \cdot d x, \int d W=\int-k \cdot d\left[\frac{1}{2} x^{2}\right]$
$\int_{0}^{W} d W=\int_{0}^{x} d\left[-\frac{k}{2} x^{2}\right]=-\frac{1}{2} k x^{2}$
$F=-k x=m \cdot a=m \cdot \frac{d v}{d t}, m \cdot \frac{d v}{d t}=-k x, m \cdot d v=-k x \cdot d t, m \cdot v \cdot d v=-k x \cdot v \cdot d t$,
$m v \cdot d v=-k x \frac{d x}{d t} d t=-k x \cdot d x, d\left[\frac{1}{2} m v^{2}\right]=d\left[-\frac{1}{2} k x^{2}\right]$

Example: Acumin canister of mass $m=0.40 \mathrm{~kg}$ slides across a horizontal frictionless counter with speed $v=0.50 \mathrm{~m} / \mathrm{s}$. It then runs into and compresses a spring of spring constant $k=750 \mathrm{~N} / \mathrm{m}$. When the canister is momentarily stopped by the spring, by what distance d is the spring compressed?

$E=\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2}, 750 \cdot x^{2}=0.4 \cdot 0.5^{2}, x=0.012 \cdot m=1.2 \cdot \mathrm{~cm}$

7.7 Conservative and Nonconservative

Forces

Conservative Forces

isolated system -> $W=\Delta E=0$

1. The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle
2. The work done by a conservative force on a particle moving through any closed path is zero.
Conservative -> the force can be derived from a potential function
Nonconservative forces -> can not find a scalar function - potential -> energy is not conserved

Example: A single constant force $\vec{F}=(3 \hat{i}+5 \hat{j}) N$ acts on a $4.00-\mathrm{kg}$ particle. (a)
Calculate the work done by this force if the particle moves from the origin to the point having the vector position $\vec{r}=(2 \hat{i}-3 \hat{j}) m$. Does this result depend on the path?

Explain. (b) What is the speed of the particle at r if its speed at the origin is $4.00 \mathrm{~m} / \mathrm{s}$?
(c) What is the change in its potential energy?
(a) constant force $\rightarrow W=\vec{F} \cdot \Delta \vec{r}=6-15=-9 \mathrm{~J}$, does not depend on the path
(b) $\Delta K=-9=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
(c) ??

7.8 Relationship Between Conservative Forces and Potential Energy

Differentiation <-> Integration
$d f=\frac{d f}{d x} d x, d f:$ infinitesimal displacement of $\mathrm{f}, \frac{d f}{d x}$: variation of f with respect to $\mathrm{x}, d x$: infinitesimal displacement of x

$\Delta U(x)=-W=-F(x) \Delta x \rightarrow F(x)=-\frac{\Delta U(x)}{\Delta x}=-\frac{d U(x)}{d x}$
$F_{x}(x)=-\frac{d U(x)}{d x}$ Extending to two dimensions, if the potential energy is $U(x, y)$, the forces in x and y directions are $F_{x}=-\frac{\partial U(x, y)}{\partial x}$ and $F_{y}=-\frac{\partial U(x, y)}{\partial y}$.
$U=\frac{1}{2} k x^{2} \rightarrow \mathrm{~F}=$?
$U=-\frac{G M m}{r} \rightarrow \mathrm{~F}=$?
$U=\frac{k q_{1} q_{2}}{r} \rightarrow \mathrm{~F}=$?

7.9 Energy Diagrams and Equilibrium of a

System

For a general conservative force,
$d U=-F_{x} d x \rightarrow F_{x}=-\frac{d U}{d x}$

for a blocksprint system: $U=\frac{1}{2} k x^{2}, \quad F_{x}=-k x$

A particle is in equilibrium if the net force acting on it is zero.

In stable equilibrium, a small displacement in any direction results in a restoring force that accelerates the particle back toward its equilibrium.

In unstable equilibrium, a small displacement results in a force that accelerates the particle away from its equilibrium position.

In neutral equilibrium, a small displacement results in zero force and the particle remains in equilibrium.

Example: In the region $-\mathrm{a}<\mathrm{x}<\mathrm{a}$ the force on a particle is represented by the potential energy function $U=-b\left(\frac{1}{a+x}+\frac{1}{a-x}\right)$, where a and b are positive constants. (a) Find the force. (b) At what value of x is the force zero? (c) stable or unstable?
(a) $F=-b\left(\frac{1}{(x+a)^{2}}-\frac{1}{(x-a)^{2}}\right)$
(b) $x=0$
(c) unstable

Lenard-Jones potential energy

$U(x)=4 \varepsilon\left[\left(\frac{\sigma}{x}\right)^{12}-\left(\frac{\sigma}{x}\right)^{6}\right]$
$F=$?

