Lecture 20 The Kinetic Theory of Gases
 20.1 Molecular Model of an Ideal Gas

1. The number of molecules in the gas is lage, and the average separation between them is large compared with their dimensions.
2. The molecules obey Newton's law of motion, but as a whole they move randomly.
3. The molecules interact only by short-range force during elastic collisions.
4. The molecules make elastic collisions with the walls
5. The gas under consideration is a pure substance; that is, all molecules are identical.

\qquad

$$
\begin{aligned}
& \Delta t=\frac{2 d}{v_{x i}}, F \Delta t=2 m v_{x i}, \quad F_{i, o n-\text { wall }}=\frac{2 m v_{x i}}{\Delta t}=\frac{m v_{x i}^{2}}{d} \\
& F=\sum_{i=1}^{N} \frac{m v_{x i}^{2}}{d}=\frac{m}{d} \sum_{i=1}^{N} v_{x i}^{2}, \sum v_{x i}^{2}=N\left\langle v_{x}^{2}\right\rangle,\left\langle v^{2}\right\rangle=3\left\langle v_{x}^{2}\right\rangle \\
& F=\frac{m}{d} N \frac{1}{3}\left\langle v^{2}\right\rangle, \quad P=\frac{F}{A}=\frac{F}{d^{2}}=\frac{N}{3 d^{3}} m\left\langle v^{2}\right\rangle=\frac{N}{V} \frac{1}{3}\left\langle m v^{2}\right\rangle
\end{aligned}
$$

Molecular Interpretation of Temperature

$$
P V=N k_{B} T, k_{B} T=\frac{1}{3}\left\langle m v^{2}\right\rangle,\left\langle\frac{1}{2} m v^{2}\right\rangle=\frac{3}{2} k T
$$

$\rightarrow T=\frac{2}{3 k_{B}}\left\langle\frac{1}{2} m v^{2}\right\rangle$ The temperature is a direct measure of average molecular kinetic energy.

Theorem of equipartition of energy:
$\left\langle\frac{1}{2} m v_{x}{ }^{2}\right\rangle=\frac{1}{2} k T$ one degree of freedom
$<\frac{1}{2} m v^{2}>=\frac{3}{2} k T$ three degrees of freedom

Total translational kinetic energy: $E_{k}=N \cdot<\frac{1}{2} m v^{2}>=\frac{3}{2} N k_{B} T=\frac{3}{2} n R T$
Root mean square speed: $v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 R T}{M}}$
For hydrogen, at room temperature, $v_{r m s}=\sqrt{\frac{3 \cdot 8.315 \cdot 300}{2 \times 10^{-3}}}=1.9 \times 10^{3} \mathrm{~m} / \mathrm{s}$

Example: A Tank of Helium

A tank of volume $0.3 \mathrm{~m}^{3}$ contains 2 mole of helium gas at $20^{\circ} \mathrm{C}$. Assuming the helium behaves like an ideal gas, (a) find the total internal energy of gas. (b) What is the rms speed of the atoms?
$E=\frac{3}{2} n R T=7.3 \times 10^{3} J, \quad v=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 \cdot 8.31 \cdot 293}{4 \times 10^{-3}}}=1.35 \cdot 10^{3} \mathrm{~m} / \mathrm{s}$

20.2 Molar Specific Heat of an Ideal Gas

Energy Conservation: $d E=d Q+d W$
$\underline{\text { Ideal Gas: }} E_{\text {int }}=\frac{3}{2} n R T, \underline{\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K},} \underline{P V=n R T}$
Constant volume: $Q=n C_{v} \Delta T$
$E_{\text {int }}=\frac{3}{2} n R T$
$d W=P d V=0, d E=d Q, C_{v}=\frac{1}{n} \frac{d Q}{d T}=\frac{1}{n} \frac{d E}{d T}=\frac{3}{2} R=12.5 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

	C_{p}	C_{v}	$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}$	$\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$
He	20.8	12.5	8.33	1.67
H_{2}	28.8	20.4	8.33	1.41
CO_{2}	37	28.5	8.5	1.31

Constant pressure: $Q=n C_{p} \Delta T$
$d E=d Q+d W, n C_{v} d T=n C_{P} d T-P d V, \quad P d V=n R d T$
$n C_{v} d T=n C_{P} d T-n R d T$
$C_{p}=C_{v}+R \rightarrow$ ideal gas $C_{p}=\frac{5}{2} R$
$\gamma=\frac{C_{P}}{C_{v}}=\frac{5 R / 2}{3 R / 2}=1.67$
Example: A cylinder contains 3.00 mol of helium gas at a temperature of 300 K .
(a) If the gas is heated at constant volume, how much energy must be transferred by heat to the gas for its temperature to increase to 500 K ?
(b) How much energy must be transferred by heat to the gas at constant pressure to raise the temperature to 500 K ?
(a) $Q=n C_{V} \Delta T, C_{V}=\frac{3}{2} R$
(b) $Q=n C_{P} \Delta T, C_{P}=\frac{5}{2} R$

20.3 Adiabatic Processes for an Ideal Gas

Serway/Jewett; Principles of Physics, $3 / \mathrm{e}$ Figure 17.14

Energy Conservation: $d E=d Q+d W$
Ideal Gas: $E_{\text {int }}=\frac{3}{2} n R T, \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}, \underline{P V}=n R T$
$P_{1} V_{1}=n R T_{1} \neq P_{2} V_{2}=n R T_{2}$
$d E=d W$
$n C_{v} d T=-P d V \quad--(1)$

$P V=n R T$
$P d V+V d P=n R d T \quad--(2)$
$P d V+V d P=-\frac{R}{C_{v}} P d V$
$\frac{d V}{V}+\frac{d P}{P}=-\frac{R}{C_{v}} \frac{d V}{V}=-\frac{C_{P}-C_{v}}{C_{v}} \frac{d V}{V}=\left(-\frac{C_{P}}{C_{v}}+1\right) \frac{d V}{V}$
$\frac{d P}{P}=-\frac{C_{P}}{C_{V}} \frac{d V}{V}=-\gamma \frac{d V}{V}, \frac{d P}{P}+\gamma \frac{d V}{V}=0$
$\ln P+\gamma \ln V=$ const,$P V^{\gamma}=$ const
since $P V=n R T, T V^{\gamma-1}=$ const

Example: A Diesel Engine Cylinder

The fuel-air mixture in the cylinder of a diesel engine at $20.0^{\circ} \mathrm{C}$ is compressed from an initial pressure of 1 atm and volume of $800 \mathrm{~cm}^{3}$ to a volume of $60 \mathrm{~cm}^{3}$. Assuming that the mixture behave as an ideal gas with $\gamma=1.4$ and that the compression is adiabatic, find the final pressure and temperature of the mixture.

$$
P_{f}=P_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}=1 \cdot\left(\frac{800}{60}\right)^{1.4}=37.6 \mathrm{~atm}, T_{f}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}=293.15\left(\frac{800}{60}\right)^{0.4}=826 \mathrm{~K}
$$

20.4 The Equipartition of Energy

The theorem of equipartition of energy: at equilibrium , each degree of freedom contributes, on the average, $\frac{1}{2} k_{B} T$ of energy per molecule

Monatomic gas: three degrees of freedom more complex molecules, the vibrational and
 rotational motions contribute to the internal energy

Diatomic gas:

including rotational energy: $E=5 \frac{1}{2} N k_{B} T$

$$
C_{V}=\frac{5}{2} R, C_{V}=\frac{7}{2} R
$$

including vibrational energy: $E=7 \frac{1}{2} N k_{B} T$ $C_{V}=\frac{7}{2} R, C_{V}=\frac{9}{2} R$

Agrees with equipartition theorem at high temperature \rightarrow classical limit, Boltzmann statistics

A Hint of Energy Quantization:
classical statistics
or quantum statistics
energy level splitting:
$\Delta E_{\text {translation }}<\Delta E_{\text {rotation }}<\Delta E_{\text {vibration }}$
-

20.5 Distribution of Molecular Speeds

Distribution functions (number of occurrence times): $f_{i}=\frac{n_{i}}{N} \rightarrow$ value s_{i}
$\sum_{i} f_{i}=1$ since $\sum n_{i}=N$
The average value will be $s_{a v}=\sum_{i} s_{i} f_{i}$.
The average of the square of the value will be $\left(s^{2}\right)_{a v}=\left\langle s^{2}\right\rangle=\sum_{i} s_{i}^{2} f_{i}$.
The root mean square value will be $s_{r m s}=\sqrt{\left\langle s^{2}\right\rangle}$.
The standard deviation will be $\sigma^{2}=\left\langle\left(s_{i}-s_{a v}\right)^{2}\right\rangle=\left\langle s^{2}\right\rangle-s_{a v}^{2}$
Change to the scheme of continuous distribution:
$f_{i}=\frac{n_{i}}{N} \rightarrow f(x)$
$\sum_{i} f_{i}=1 \rightarrow \int f d x=1 ; \sum_{i} s_{i} f_{i} \rightarrow \int s(x) f(x) d x$
$\left(s^{2}\right)_{a v}=\left\langle s^{2}\right\rangle=\sum_{i} s_{i}^{2} f_{i} \rightarrow \int[s(x)]^{2} f(x) d x$
Maxwell-Boltzmann distribution function: $P(E) \propto e^{-\frac{E}{k T}}$
Go into the k space (or velocity space) \rightarrow

Number of atoms with speed v: $N(v)=4 \pi N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-\frac{m v^{2} / 2}{k T}}$

$$
\begin{aligned}
& v_{r m s}=1.73 \sqrt{\frac{k T}{m}} \\
& v_{m p}=\sqrt{\frac{2 k T}{m}}=1.4 \sqrt{\frac{k T}{m}} \\
& \bar{v}=\sqrt{\frac{8}{\pi} \frac{k T}{m}}
\end{aligned}
$$

Serway/Jewett; Principles of Physics, 3/e
Figure 16.15

$I=\int_{0}^{\infty} e^{-A v^{2}} d v,-\frac{d}{d A} I=\int_{0}^{\infty} v^{2} e^{-A v^{2}} d v$
$I^{2}=\frac{1}{4} \int_{-\infty}^{\infty} e^{-A\left(x^{2}+y^{2}\right)} d x d y=\frac{\pi}{4 A}, \quad I=\frac{1}{2} \sqrt{\frac{\pi}{A}}, \int_{0}^{\infty} v^{2} e^{-A \nu^{2}}=\frac{\sqrt{\pi}}{4} A^{-\frac{3}{2}}$

$$
\int_{0}^{\infty} N_{v} d v=4 \pi N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} v^{2} e^{-\frac{m}{2 k T} v^{2}}=4 \pi N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \frac{\sqrt{\pi}}{4}\left(\frac{2 k T}{m}\right)^{\frac{3}{2}}=N
$$

$$
\bar{v}=\frac{\int_{0}^{\infty} v N_{v} d v}{N}=?, \int_{0}^{\infty} v^{3} e^{-A v^{2}} d v=-\int_{0}^{\infty} \frac{v^{2}}{2 A} d\left(e^{-A v^{2}}\right)=\frac{1}{A} \int_{0}^{\infty} e^{-A v^{2}} v d v=\frac{1}{2 A^{2}}
$$

$$
\bar{v}=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-A v^{2}} d v=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \frac{1}{2}\left(\frac{2 k T}{m}\right)^{2}=\sqrt{\frac{8}{\pi} \frac{k T}{m}}
$$

$$
\left\langle v^{2}\right\rangle=\frac{\int_{0}^{\infty} v^{2} N_{v} d v}{N}=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} v^{4} e^{-A v^{2}} d v=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \frac{3}{2} \frac{\sqrt{\pi}}{4}\left(\frac{2 k T}{m}\right)^{5 / 2}=\frac{3 k T}{m}
$$

Because $\int_{0}^{\infty} v^{4} e^{-A v^{2}} d v=-\int_{0}^{\infty} \frac{v^{3}}{2 A} d\left(e^{-A v^{2}}\right)=-\left[\frac{v^{3}}{2 A} e^{-A v^{2}}\right]_{0}^{\infty}+\frac{3}{2} \frac{1}{A} \int_{0}^{\infty} v^{2} e^{-A v^{2}} d v=\frac{3}{2} \frac{\sqrt{\pi}}{4} A^{-\frac{5}{2}}$

$$
\frac{m}{2}\left\langle v^{2}\right\rangle=\frac{3 k T}{2} \rightarrow \text { Equipartition Theory }
$$

Example: A System of Nine Particles

Nine particles have speeds of $5,8,12,12,12,14,14,17$, and $20 \mathrm{~m} / \mathrm{s}$. (a) Find the average speed.
$\bar{v}=12.7 \mathrm{~m} / \mathrm{s}$
(b) What is the rms speed?
$v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=13.3 \mathrm{~m} / \mathrm{s}$
(c) What is the most probable speed of the particles?
$12 \mathrm{~m} / \mathrm{s}$

