Chapter 24 Electric Potential

conservative forces -> potential energy - What is a conservative force?

Electric potential ($\mathrm{V}=\mathrm{U} / \mathrm{q}$): the potential energy (U) per unit charge (q) is a function of the position in space

Goal:

1. establish the relationship between the electric field and electric potential
2. calculate the electric potential of various continuous charge distribution
3. use the electric potential to determine the electric field

24.1 Electric Potential and Potential Difference

$d U=-\vec{F} \cdot d \vec{l}$
$\Delta U=-\int_{A}^{B} \vec{F} \cdot d \vec{l}=-q_{0} \int_{A}^{B} \vec{E} \cdot d \vec{l} \quad$ (potential energy difference)
$V \equiv \frac{U}{q_{0}}, \Delta V=V_{B}-V_{A}=\frac{\Delta U}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{l} \quad$ (electric potential difference)

The potential function is continuous everywhere.

Units

1_{-}Volt $=1 _V=1 _J / C, 1 _N / C=1 _V / m$
$1 _e V=1.602 \cdot 10^{-19} \mathrm{~J}$
$300 \mathrm{~K}=$? eV , visible light: ? eV

24.2 Potential difference in a

uniform electric field

$V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{l}=-E d, \quad \Delta U=q \Delta V=-q E d$

What is equipotential surface??

Example: The electric field between two parallel plates of opposite charge

Example: Motion of a proton in a uniform electric field $E=8.0 \times 10^{4} \mathrm{~V} / \mathrm{m}, \mathrm{d}=0.5 \mathrm{~m}$ (a) Find the change in electric potential between the points A

Serway/Jewett; Principles of Physics, 3/e
Figure 20.4
 and B. (b) Find the change in potential energy.

24.3 Electric Potential and Potential Energy Due to

Point Charges

$\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{3}} \vec{r}$
$V_{B}-V_{A}=-\int_{r A}^{r B} \frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r} \cdot \hat{r} d r=\frac{q}{4 \pi \varepsilon_{0} r_{B}}-\frac{q}{4 \pi \varepsilon_{0} r_{A}}$
let $r_{B}=r$ and $r_{A}=\infty \quad-->V=\frac{q}{4 \pi \varepsilon_{0} r}$ and $U=q_{0} V=\frac{q_{0} q}{4 \pi \varepsilon_{0} r}$

Example: Potential Energy of a Hydrogen Atom
(a) What is the electric potential at a distance $\mathrm{r}=0.529 \times 10^{-10} \mathrm{~m}$ from a proton?
(b) What is the electric potential energy of the electron and the proton at this separation?
(a) $V=\frac{k e}{r}=\frac{\left(9 \times 10^{9}\right)\left(1.602 \times 10^{-19}\right)}{0.529 \times 10^{-10}}=27.2_{-} V$
(b) $U=-e V=-27.2_{_} \mathrm{eV}$

Example: Potential Energy of Nuclear-Fission Products
In nuclear fission, a uranium- 235 nucleus captures a neutron and splits apart into two lighter nuclei. Sometimes the two fission products are a barium nucleus (charge 56e) and a krypton nucleus (charge 36e). Assume that immediately after the split these nuclei are positive point charges separated by $r=14.6 \times 10^{-15} _m$. Calculate the potential energy of this two-charge system in electron volts.
$U=\frac{\left(9 \times 10^{9}\right)(56)\left(1.602 \times 10^{-19}\right)(36)\left(1.602 \times 10^{-19}\right)}{14.6 \times 10^{-15}} J=\frac{\left(9 \times 10^{9}\right)(56)\left(1.602 \times 10^{-19}\right)(36)}{14.6 \times 10^{-15}} \mathrm{eV}$ $=199 _\mathrm{MeV}$
$V=\sum \frac{q_{i}}{4 \pi \varepsilon_{0} r_{i}}->$ easier for calculation without consideration of vector addition

Example: Potential Due to Two Point Charges
$\mathrm{P}_{1}: V=\frac{k(5 n C)}{0.04}+\frac{k(5 n C)}{0.04}$
$\mathrm{P}_{2}: V=\frac{k(5 n C)}{0.10}+\frac{k(5 n C)}{0.06}$

Example: A point charge q_{1} is at the origin, and a second point charge q_{2} is on the x axis at $x=a$. Find the potential everywhere on the x -axis.
$V=\frac{k q_{1}}{|x|}+\frac{k q_{2}}{|x-a|}$

24.4 Obtaining the Value of the Electronic Field from

the Electric Potential

$d U=-\vec{F} \cdot d \vec{l} \quad-->d V=-\vec{E} \cdot d \vec{l} \quad-->\quad E=-\frac{d V}{d l}$
The electric field points in the direction in which the potential decrease most rapidly.
(1D? 2D? 3D?)
$d V=-\vec{E} \cdot d \vec{l}=-E d l \cos \theta=-E_{t} d l$
$E_{t}=-d V / d l$

If the potential V depends only on x , there will be no change in V for displacements in the y and z direction.
$d V(x)=-\vec{E} \cdot d \vec{l}=-\vec{E} \cdot(\hat{i} d x)=-\left(E_{x} \hat{i}+E_{y} \hat{j}+E_{z} \hat{k}\right) \cdot(\hat{i} d x)=-E_{x} d x$
--> $E_{x}=-\frac{d V}{d x}$

If displacements perpendicular to the radial direction give no change in V ,
$d V=-\vec{E} \cdot d \vec{l}=-\vec{E} \cdot(\hat{r} d r)=-E_{r} d r$
$-->E_{r}=-\frac{d V}{d r}$

Example: Find the electric field for the electric potential function V given by $V=100-25 x _(V)$.

Example: Potential Due to An Electric Dipole
An electric dipole consists of a positive charge $+q$ on the x-axis at $x=a \hat{i}$ and a negative charge $-q$ on the x-axis at $x=-a \hat{i}$. Find the potential on the x-axis for $x \gg a$ in terms of the electric dipole moment $p=2 q a$.
$x>a \quad->\quad V=\frac{k q}{x-a}+\frac{k(-q)}{x+a}=\frac{2 k q a}{x^{2}-a^{2}}$
$x \gg a$--> $V \approx \frac{2 k q a}{x^{2}}=\frac{k p}{x^{2}}$

General Relation Between \vec{E} and V

$E_{x}=-\frac{d V}{d x} \& E_{y}=-\frac{d V}{d y} \& E_{z}=-\frac{d V}{d z}$
$\vec{E}=E_{x} \hat{i}+E_{y} \hat{j}+E_{z} \hat{k}=-\frac{d V}{d x} \hat{i}-\frac{d V}{d y} \hat{j}-\frac{d V}{d z} \hat{k}=-\left(\hat{i} \frac{d}{d x}+\hat{j} \frac{d}{d y}+\hat{k} \frac{d}{d z}\right) V \equiv-\vec{\nabla} V$

Obtaining electric field from electric potential

$$
\vec{E}=-\vec{\nabla} V=-\hat{i} \frac{\partial}{\partial x} V(x, y, z)-\hat{j} \frac{\partial}{\partial y} V(x, y, z)-\hat{k} \frac{\partial}{\partial z} V(x, y, z)
$$

$$
\begin{aligned}
\vec{E} & =-\vec{\nabla} V=-\hat{r} \frac{\partial}{\partial r} V(r, \theta, \phi)-\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} V(r, \theta, \phi)-\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} V(r, \theta, \phi) \\
\vec{E} & =-\vec{\nabla} V=-\hat{r} \frac{\partial}{\partial r} V(r, \theta, z)-\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} V(r, \theta, z)-\hat{z} \frac{\partial}{\partial z} V(r, \theta, z)
\end{aligned}
$$

Potential due to an electric dipole

$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left|\vec{r}-\vec{r}_{1}\right|}+\frac{1}{4 \pi \varepsilon_{0}} \frac{-q}{\left|\vec{r}+\vec{r}_{1}\right|}$
$V=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{\sqrt{r^{2}+r_{1}^{2}-2 r r_{1} \cos \theta}}-\frac{1}{\sqrt{r^{2}+r_{1}^{2}+2 r r_{1} \cos \theta}}\right)$
$=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r}\left(1-\frac{1}{2}\left(-2 \frac{r_{1}}{r} \cos \theta\right)-\left(1-\frac{1}{2} 2 \frac{r_{1}}{r} \cos \theta\right)\right)=\frac{q}{4 \pi \varepsilon_{0} r} \frac{2 r_{1} \cos \theta}{r}=\frac{q d \cos \theta}{4 \pi \varepsilon_{0} r^{2}}=\frac{p \cos \theta}{4 \pi \varepsilon_{0} r^{2}}$
$\vec{E}=\hat{r}\left(-\frac{\partial}{\partial r}\right) V+\hat{\theta}\left(-\frac{\partial}{r \partial \theta}\right) V=$?

24.5 Electric Potential Due to Continuous Charge

Distributions

$d V=\frac{k d q}{r} \rightarrow V=\int \frac{k d q}{r}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r}$

V Due to an Infinite Line Charge:

METHOD 1:

$V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\lambda d x}{\sqrt{d^{2}+x^{2}}}$
let $x=d \tan \theta$

$V=\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{\tan ^{-1} \frac{0}{d}}^{\tan ^{-1} \frac{L}{d}} \sec \theta d \theta=\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{\tan ^{-1} \frac{1}{d}}^{\tan ^{-1} \frac{L}{d}} \frac{1}{2}\left(\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}\right) d \sin \theta$
$V=\frac{\lambda}{4 \pi \varepsilon_{0}} \frac{1}{2}\left[\ln \frac{1+\sin \theta}{1-\sin \theta}\right]_{0}^{\tan ^{-1} \frac{L}{d}}=\frac{\lambda}{4 \pi \varepsilon_{0}} \ln \left(\frac{L+\sqrt{L^{2}+d^{2}}}{d}\right)$

METHOD 2:

Obtain E by applying Gauss's law:

(b)
$\vec{E}=\frac{4 \pi k \lambda L}{2 \pi r L} \hat{r}=\frac{2 k \lambda}{r} \hat{r}$

$V_{P}-V_{\text {ref }}=-\int_{r_{-} r e f}^{r_{-} P} \frac{2 k \lambda}{r} d r=2 k \lambda \ln \left(\frac{R_{P}}{R_{\text {ref }}}\right)$

V on The Axis of a Charged Ring

$V=\int \frac{k d q}{r}=k \int \frac{\lambda d s}{\sqrt{x^{2}+a^{2}}}=k \int_{0}^{2 \pi} \frac{\lambda a d \theta}{\sqrt{x^{2}+a^{2}}}=\frac{k 2 \pi a \lambda}{\sqrt{x^{2}+a^{2}}}=\frac{k Q}{\sqrt{x^{2}+a^{2}}}$

$E_{x}=-d V / d x=?$

V on The Axis of a Uniformly Charged Disk:

$V=\int \frac{k d q}{r}=\int \frac{k \sigma 2 \pi r d r}{\sqrt{z^{2}+r^{2}}}=\int_{0}^{R} \frac{k \sigma 2 \pi r d r}{\sqrt{z^{2}+r^{2}}}=2 \pi k \sigma\left(\sqrt{z^{2}+r^{2}}\right)_{0}^{R}$
$V=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{R} d r \int_{0}^{2 \pi} r d \theta \frac{\sigma}{\sqrt{z^{2}+r^{2}}}$
$V=\frac{\sigma}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+R^{2}}-z\right)$

for $z \gg$-->
$V(z)=2 \pi k \sigma\left(z\left(1+\frac{R^{2}}{z^{2}}\right)^{1 / 2}-z\right)=2 \pi k \sigma\left(z\left(1+\frac{1}{2} \frac{R^{2}}{z^{2}}\right)-z\right)=\frac{k \pi R^{2} \sigma}{z}=\frac{k Q}{z}$

Example: Find the electric field along z direction.
$E_{z}=-\frac{\partial}{\partial z} V=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right)$

24.6 Electric potential Due to a Charged Conductor

$\vec{E}=0$ inside a conductor $->V=$ const
The conductor is a three dimensional equipotential surface.
The potential V has the same value everywhere on an equipotential surface.

V Due to an Infinite Plane of Charge

 METHOD 2:Obtain E by applying Gauss's law:

$$
E=2 \pi k \sigma
$$

$$
\begin{aligned}
& x>0 \text {--> } V=-\int_{r e f f}^{V_{p}} \vec{E} \cdot d \vec{l}=-\int_{r e f f}^{V_{p}} 2 \pi k \sigma d x=-2 \pi k \sigma x+V_{0} \\
& x<0 \text {--> } V=-\int_{r e f f}^{V_{p}} \vec{E} \cdot d \vec{l}=\int_{r e f f}^{V_{p}} 2 \pi k \sigma d x=2 \pi k \sigma x+V_{0}
\end{aligned}
$$

V Inside and Outside a Spherical Shell of Charge

METHOD 2:

Obtain E by applying Gauss's law:
$r>=R, \quad V=\frac{k Q}{r}$
$r<R, \quad V=\frac{k Q}{R}$

V for a Uniformly Charged Sphere

(a) $r>R$
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \hat{r}, \quad E=-\int_{\infty}^{r} \vec{E} \cdot \hat{r} d r=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$
(b) $r<R$

$E=\frac{Q}{4 \pi \varepsilon_{0} R^{3}} r \hat{r}, V(r)-V(R)=-\int_{R}^{r} E \cdot \hat{r} d r=\frac{Q}{4 \pi \varepsilon_{0} R^{3}}\left(\frac{1}{2} R^{2}-\frac{1}{2} r^{2}\right)$
(a)
$V(r)=\frac{Q}{4 \pi \varepsilon_{0} R^{3}}\left(\frac{3}{2} R^{2}-\frac{1}{2} r^{2}\right)$

Example: A hollow uncharged spherical conducting shell has an inner radius a and an outer radius b . A positive charge q is in the cavity, at the center of the sphere. (a) Find the charge on each surface of the conductor. (b) Find the potential.

$Q_{a}=-q, Q_{b}=+q$
$r \geq b, \quad V=\frac{k q}{r}$
$b \geq r \geq a, V=\frac{k q}{b}$
$a \geq r, \quad V=\frac{k q}{r}-\frac{k q}{a}+\frac{k q}{b}$

Example: The two spheres are separated by a distance much greater than R_{1} and R_{2}. Find the charges Q_{1} and Q_{2} on the two spheres if the total charge is Q. Find the ratio of the magnitudes of the electric fields at the surfaces of the spheres.
(1) $Q_{1}+Q_{2}=Q$
$\frac{k Q_{1}}{R_{1}}=V_{1}=V_{2}=\frac{k Q_{2}}{R_{2}}-->Q_{1}=\frac{R_{1}}{R_{1}+R_{2}} Q$
(2) $\frac{E_{1}}{E_{2}}=\frac{\frac{k Q_{1}}{R_{1}^{2}}}{\frac{k Q_{2}}{R_{2}^{2}}}=\frac{R_{2}}{R_{1}}$

A charge is placed on a conductor of nonspherical shape.
$V=\frac{k Q}{R}=\frac{k 4 \pi R^{2} \sigma}{R}=4 \pi k \sigma R$
$\sigma=\frac{V}{4 \pi k R}$

small R --> Large V

24.7 The Millikan Oil-Drop Experiment

24.8 Applications of Electrostatics

The Van de Graaff Generator

The Electrostatic Precipitator Xerography and Laser Printers

