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Chapter 31 Inductance 

31.1 Self-Induction and Inductance 

Self-Inductance 

InIABAm == 0  --> LIm =  

 

The unit of the inductance is henry (H). 
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When the current in the circuit is changing, the magnetic flux is also changing. 
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The self inductance of a infinite long solenoid: 
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Considering the inductor having an internal resistance r, the potential difference is: 
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Example: Model a long coaxial cable as two thin, concentric, 

cylindrical conducting shells of radii a and b and length l. The 

conducting shells carry the same current in opposite directions. 

Calculate the inductance L of this cable. 

Calculate magnetic flux: 
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31.2 RL Circuits 

Use Kirchhoff’s rule: 
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Example: Find the total energy dissipated in the resistor R, when the current in the 

inductor decreases from its initial value of I0 to 0? 
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31.3 Energy in a Magnetic Field 

Obtain the magnetic energy from the emf induced by self inductance. 

LIm =  --> The induced emf is 
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The energy dissipated or the power is 
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The total energy when the current has reached its final value If is: 

2

00
2

1
LILIdIdt

dt

dI
LIU

IfI

I

tft

t

==







= 

=

=

=

=

 



 3 

Calculate the magnetic energy by obtaining the energy stored in the self inductor of an 

infinite solenoid. 
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Example: A certain region of space contains a uniform magnetic field of 0.020 T and a 

uniform electric field of 2.5 X 106 N/C. Find (a) the total electromagnetic density. 
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31.4 Mutual Inductance 

Mutual Inductance 

The magnetic field of loop1 is: 
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The flux at 1 is 2122

2

01
2

~ MII
R

=


  

The concept of inductance: MI=  

2112 MM =   --> The mutual inductance is determined when the geometrical 

configuration between the two loops is given. 
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Flux in 2: ( ) 1211
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31.5 Oscillations in an LC Circuit 

 

Kirchhoff’s Rule:  
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Apply the Kirchhoff’s loop rule: 
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Remember the pattern of this differential equation: 

0
2

2

=+
C

Q

dt

Qd
L  --> the solutions are periodical functions and the useable functions 

are ( )xsin  ( ( )xcos ), ( )ixexp  ( ( )xexp ), … 

 

Guess that the answer is ( )CBtAQ += cos . (Here A and C can be determined by 

initial conditions.) 
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The average energy stored in the capacitor (inductor) is 
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What are physical pictures of peakQ  and peakI ? 

Example: A 2-F capacitor is charged to 20 V and the capacitor is then connected 

across a 6-H inductor. (a) What is the frequency of oscillation? (b) What is the peak 

value of the current? 
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Simple AM Radio receiver: 

Capacitor --> Electric Field 

--> Potential Energy 

 

Inductor --> Moving of 

Charges --> Kinetic Energy 
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31.6 The RLC Circuit 

 

Kirchhoff’s Rule: 
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RLC Circuit (Damped Oscillation) 

Diff Eq: 0=−−− IR
C

Q

dt

dI
L  

--> 0
2

2

=++
C

Q

dt

dQ
R

dt

Qd
L  (Damped Oscillations: bvkxmaF −−== ) 

The natural frequency (no resistaor) is: 
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The energy distributed in the circuit elements is: 
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