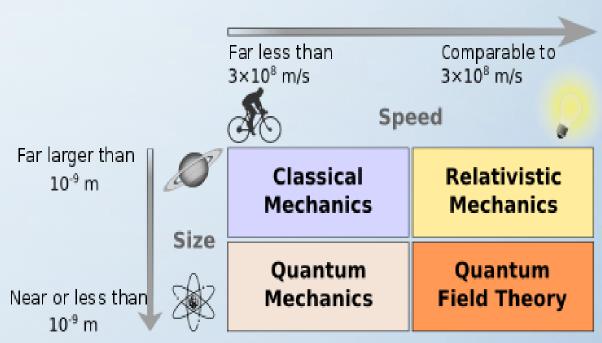

Physics I Lecture02- Physics & measurements-I


簡紋濱 國立交通大學 理學院 電子物理系

CONTENTS

- 1. Measurement Standard Length, Mass, and Time
- 2. Matter & Physical Model
- 3. Dimensional Analysis
- 4. Unit Conversion
- 5. Estimates and Order of Magnitude
- 6. Significant Figures

WHAT IS PHYSICS?

WHAT

WHAT IS PHYSICS?

Classical Mechanics

Relativity

mechanics (rotation, energy, gravitation), mechanical waves, thermodynamics, electromagnetics

atomic physics, nuclear physics, solid state physics

Physics

special relativity, general relativity

many-particle physics – particle & solid state physics

Quantum Mechanics Quantum Field Theory

1. MEASUREMENT STANDARD -LENGTH, MASS, AND TIME

The international system (SI) of units:

```
Length – Meter (m)
```

Mass – kilogram (kg)

Time – second (s)

The **English system** of units:

```
Length – inch (in., 2.54 cm), foot (ft., 12 inches), mile (mi, 1.609 km)
```

Mass – pound (lb, 0.454 kg), ounce (oz, 1 lb = 16 oz)

Time - second (s)

The **derived** units:

```
Force – Newton (N, 1 N = 1 kg m / s^2)
```

Energy – Joule (J, 1 J = 1 kg m^2 / s^2)

1. MEASUREMENT STANDARD -LENGTH, MASS, AND TIME

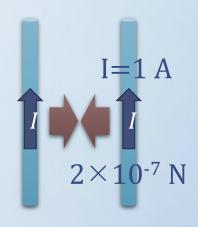
The units in **electromagnetics**:

Unit for electric current: ampere (A)

Charge unit: Coulomb (C, 1 C = 1 A s)

Voltage unit: Volt (V, 1 V = 1 J / C = 1 kg m^2 s⁻² / A s)

 $1 V = 1 \text{ kg m}^2 \text{ s}^{-3} \text{ A}^{-1}$


The units in **thermodynamics**:

Ambiguous unit for temperature: Kelvin (k)

Thermal conductivity: W / m K = $kg m / K s^2$

The units used in Lab:

Pressure: PSI (lb / in.2, 1 atm = 14.7 PSI, 1 atm \approx 1 kgw / cm²)

1. MEASUREMENT STANDARD - LENGTH, MASS, AND TIME

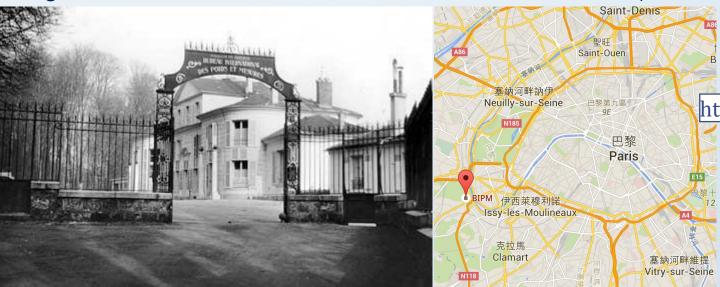
The standard of **length**:

~1799 – 1 meter -> one ten millionth of the distance from the equator to the north pole – Earth based standard

~1960 – 1 meter -> distance between two lines on a specific PtIr alloy bar stored in France

~1970 – 1 meter -> 1 650 763.73 wavelengths of orange-red light emitted from a Krypton-86 lamp (605.78 nm visible light)

~1983 – 1 meter -> the distance traveled by light in vacuum during a time of 1/299 792 458 s, where the light is of wavelength



1. MEASUREMENT STANDARD - LENGTH, MASS, AND TIME

The standard of mass:

since 1887 – 1 kg -> the mass of a specific PtIr alloy cylinder, kept at the International Bureau of Weights and Measures at Severes, France


In November 2018, the international scientific community plans to redefine the kilogram, freeing it from its embodiment in one golf-ball-sized artifact, and basing it instead on a constant of nature.— mentioned in NIST report

http://museum.nist.gov

Google map

ILB = mg $V = vBL \rightarrow IV = mgv$ $V = \frac{hf}{2e}, \frac{1}{R} = N\frac{e^2}{h}$

https://www.youtube.com/watch?v=0o0jm1PPRuo

Animated Gif image from the report - "Redefining The Kilogram", NIST (http://www.nist.gov)

1. MEASUREMENT STANDARD - LENGTH, MASS, AND TIME

The standard of time:

before 1967 – mean solar day is the standard of time, a second is 1 / 86 400 of a mean solar day

after 1967 – after the invention of "atomic clock", one second is 9 192 631 770 times the period of vibration of radiation from the Cs-133 atom

2004 Aug 27, NIST Unveils Chip-Scale Atomic Clock, "cesium vapor confined in a sealed cell and probed with

light from an infrared laser"

1. MEASUREMENT STANDARD -LENGTH, MASS, AND TIME

Prefix:

Facto	r	Prefix	Symbol				
10^{24}	E24	yotta	\mathbf{Y}	10-1	E-1	deci	d
10^{21}	E21	zetta	\mathbf{Z}	10-2	E-2	centi	c
10^{18}	E18	exa	\mathbf{E}	10-3	E-3	milli	m
10^{15}	E15	peta	P	10-6	E-6	micro	μ
10^{12}	E12	tera	T	10-9	E-9	nano	n
10^{9}	E9	giga	G	10-12	E-12	pico	p
10^6	E6	mega	\mathbf{M}			femto	f
10^3	E3	kilo	k	10-18	E-18	atto	a
10^2	E2	hector	h	10-21	E-21	zepto	Z
10^{1}	E 1	deca	da	10-24		yocto	y

2016 May, https://physics.nist.gov/cuu/Units/prefixes.html https://ipkk.com/read/278308.html

1. MEASUREMENT STANDARD -LENGTH, MASS, AND TIME

Some number with units that YOU must know:

Length:

Radius of the Earth: 6400 km, 6.4 x 10⁶ m

Altitude of a satellite: 200 km above the Earth surface

Diameter of a hydrogen atom: 10^{-10} m, r = 0.529 Å

Diameter of a proton: 10^{-15} m = 1 fm

Mass:

Human: $7 \times 10^1 \text{ kg}$

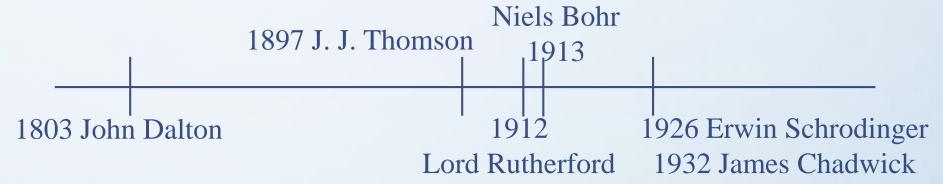
Hydrogen atom: $1 * 10^{-3} / 6.02 * 10^{23} = 1.67 * 10^{-27} \text{ kg}$

Time:

Period of audible sound waves: 10⁻³ s

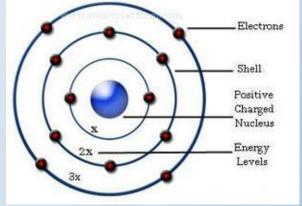
Period of visible light waves: 10⁻¹⁵ s

Magnetic Field:


B on the Earth: 0.5 Gauss

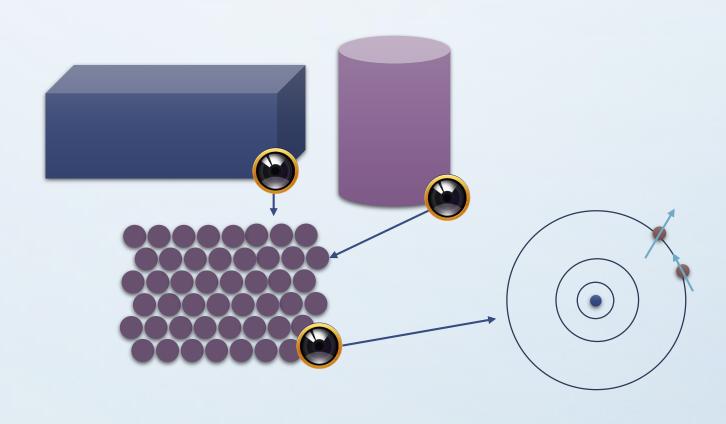
CONTENTS

- 1. Measurement Standard Length, Mass, and Time
- 2. Matter & Physical Model
- 3. Dimensional Analysis
- 4. Unit Conversion
- 5. Estimates and Order of Magnitude
- 6. Significant Figures


2. MATTER & PHYSICAL MODEL

Dalton: All elements are composed of atoms.

Thomson: Plum Pudding Model


Rutherford: atoms consisted of a small dense center (named nucleus) filled with positive charges, negatively charged electrons were scattered surrounding the nucleus and were held in orbit.

Bohr: electrons in fixed, circular orbits, more electrons in outer orbits and those in outer orbits have higher energy, there are certain energy transition for electrons from inner (outer) to outer (inner) orbits.

Modern theory: wave description

2. MATTER & PHYSICAL MODEL

http://sabella.pixnet.net/blog/post/190794622

2. MATTER & PHYSICAL MODEL

Density $(\rho = m/V)$ of Materials:

Example: A solid cube of aluminum has a volume of 0.216 cm^3 . It is known that 27.0 g of aluminum contains $6.02 * 10^{23}$ atoms. How many atoms are there in the cube?

$$m = \rho V = 2.7 \times 0.216$$
 (g)
 $\frac{0.5832}{27} = 0.0216$ (mol)
 $0.0216 \times 6.02 \times 10^{23} = 1.30032 \times 10^{22} \cong 1.3 \times 10^{22}$

Material	Density (g/cm ³)		
Gold	19.3		
Lead	11.3		
Copper	8.93		
Iron	7.87		
Aluminum	2.7		

3. DIMENSIONAL ANALYSIS

Example: It is proposed that the radial acceleration a_r is proportional to the speed v and the radius r as $a_r = kv^m r^n$, where n, m are two exponents and k is a dimensionless const. Please use the dimensional analysis to determine the two exponents.

Quantity	Symbol	Dimension
Area	Α	L ²
Volume	V	L ³
Speed	V	L/T
Acceleration	а	L/T ²
Force	f	ML/T ²
Pressure	р	M/LT ²
Density	d	M/L ³
Energy	Е	ML ² /T ²
Power	P	ML^2/T^3

$$v: L^{1}T^{-1}$$
 $r: L^{1}$ $a_{r}: L^{1}T^{-2}$

$$L^{1}T^{-2} = (L^{1}T^{-1})^{m}(L^{1})^{n}$$

$$m = 2, n = -1$$

4. UNIT CONVERSION

Write down all the details – number & unit for conversion

5 in. = 5
$$in. \times \left(\frac{2.54 \text{ cm}}{1 \text{ in.}}\right) = 12.7 \text{ cm}$$

161 km = 161 $km \times \left(\frac{1 \text{ mi}}{1.61 \text{ km}}\right) = 100 \text{ mi}$

Example: The 1st car is moving with a speed of 42 m/s and the 2nd car is moving with a speed of 55 mi/h. Are the drivers exceeding the speed limit of 100 km/h?

$$1st \ Car: \frac{42 \ m}{s} = \frac{42 \ m}{s} \times \frac{1 \ km}{1000 \ m} \times \frac{3600 \ s}{1 \ h} = 151.2 \ km/h$$

$$2nd \ Car: \frac{55 \ mi}{h} = \frac{55 \ mi}{h} \times \frac{1.61 \ km}{1 \ mi} = 88.55 \ km/h$$

5. ESTIMATES AND ORDER OF MAGNITUDE

Scientific notation, two or three digits with the multiplier of the power of $10 - N_1$. $N_2N_3 \times 10^{N_4}$

Order of magnitude without the prefix of digital number

change
$$N_1$$
. N_2N_3 to 10^{N_5} N_1 . $N_2N_3 > 10^{0.5} \rightarrow 10^1$ N_1 . $N_2N_3 < 10^{0.5} \rightarrow 10^0$ $10^{0.5} = \sqrt{10} = 3.162$

Example: There are N_A atoms in 12 g of carbon. If counting 1 atom takes 1 s, how long does it take to count all atoms in 1 g of carbon?

$$1g \times \frac{6.02 \times 10^{23}}{12 \ g} \div \left(\frac{1g}{1s}\right) \times \left(\frac{1D}{86400s}\right) \times \left(\frac{1Y}{365D}\right) \cong 1.6 \times 10^{15}$$

6. SIGNIFICANT FIGURES

Measurements: precise digits with the first estimated digit.

How to count the significant figure?

The rule of addition & subtraction: no significant figures beyond the last decimal place where both of the original numbers have significant figures.

$$1.002 + 11.0 = 12.0$$

 $10.25 - 1.1 = 9.15 \approx 9.2$

The rule of multiplication & division: no greater than the least number of significant figures in any of the numbers. $2.12 \times 3.214 = 6.81368 \cong 6.81$

6. SIGNIFICANT FIGURES

The standard deviation shall be less than the lowest decimal number.

$$3.21 \pm 0.04$$
 3.21 ± 0.05

Example: A rectangle has a length of 6.21 ± 0.02 m and a width of 7.8 ± 0.2 m. Please calculate the area.

$$(6.21 \pm 0.02) \times (7.8 \pm 0.2) = 48.438 \pm 0.156 \pm 1.242$$

= $48.438 \pm 1.398 = 48 \pm 1$

ACKNOWLEDGEMENT

國立交通大學理學院自主愛學習計畫

【科技部補助】