Chapter 11
 Conservation of Angular Momentum－I

簡紋濱
國立交通大學 理學院 電子物理系

CONTENTS

1. Vector Product
2. Angular Momentum
3. Conservation of Angular Momentum
4. The Motion of Gyroscopes and Tops
5. Quantization of Angular Momentum

1. VECTOR PRODUCT

Vector Product, Defined by The Three Unit Vectors

$$
\hat{\imath} \times \hat{\imath}=\hat{\jmath} \times \hat{\jmath}=\hat{k} \times \hat{k}=0 \quad \hat{\imath} \times \hat{\jmath}=\hat{k} \quad \hat{\jmath} \times \hat{k}=\hat{\imath} \quad \hat{k} \times \hat{\imath}=\hat{\jmath}
$$

$$
\vec{A}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}, \vec{B}=B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}
$$

$$
\vec{A} \times \vec{B}=\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}+\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\imath}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\jmath} \quad \longrightarrow \vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

$\vec{B}=B \cos \theta \hat{\imath}+B \sin \theta \hat{\jmath}$

$$
\xrightarrow[\vec{A}=A \hat{\imath}]{\theta}
$$

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
A & 0 & 0 \\
B \cos \theta & B \sin \theta & 0
\end{array}\right|=A B \sin \theta \hat{k}
$$

Some Rules: $\vec{A} \times \vec{A}=0, \vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$
$\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C} \quad \frac{d}{d t}(\vec{A} \times \vec{B})=\frac{d \vec{A}}{d t} \times \vec{B}+\vec{A} \times \frac{d \vec{B}}{d t}$

2. ANGULAR MOMENTUM \& TORQUE

Angular Momentum \& Torque About an Axis
$\vec{\tau}=\vec{r} \times \vec{F}=\vec{r} \times \frac{d \vec{p}}{d t}=\vec{r} \times \frac{d \vec{p}}{d t}+\vec{v} \times \vec{p}=\frac{d}{d t}(\vec{r} \times \vec{p})$
$\vec{L}=\vec{r} \times \vec{p}=\vec{r} \times(m \vec{v})$
$\vec{L}_{i}=\vec{r}_{i} \times\left(m_{i} \vec{v}_{i}\right) \quad \vec{r}_{i} \perp \vec{v}_{i}$
$L_{i}=m_{i} r_{i} v_{i} \quad v_{i}=r_{i} \omega$
$L=\sum L_{i}=\sum m_{i} r_{i}^{2} \omega=I \omega$
$\vec{R} \times \vec{F}=\vec{\tau}_{n e t}=\sum \vec{\tau}_{i}=\frac{d}{d t} \vec{L}$
If the direction of the angular momentum does not change, the angular acceleration is

$\tau_{\text {net }}=\frac{d}{d t} L=\frac{d}{d t}(I \omega)=I \alpha$

2. ANGULAR MOMENTUM \& TORQUE

Example: Estimate the magnitude of the angular momentum of a basketball spinning at $8 \mathrm{rev} / \mathrm{s}$. A typical basketball might have a mass of 6.40 kg and a radius of 10.8 cm .
$\omega=8 \frac{\mathrm{rev}}{\mathrm{s}}=16 \pi \frac{\mathrm{rad}}{\mathrm{s}}$
$I_{\text {ball }}=\frac{2}{5} M R^{2}=\frac{2}{5}(6.4)(0.108)^{2}=0.0299\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
$L=I_{\text {ball }} \omega=0.0299 \times 16 \pi=1.50\left(\mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)$

2. ANGULAR MOMENTUM \& TORQUE

Angular Momentum \& Torque of a System of Particles

$$
\vec{\tau}_{n e t}=\frac{d}{d t} \vec{L}_{\text {system }}=\frac{d}{d t}\left(\sum \vec{r}_{i} \times \vec{p}_{i}\right)
$$

Example: A particle moves on the xy plane in a circular path of radius r. Find the magnitude and direction of its angular momentum relative to O when its linear velocity is v.
$L=r m v$
$\vec{L}=\vec{r} \times(m v \hat{\theta})=r m v \hat{k}$

2. ANGULAR MOMENTUM \& TORQUE

Example: Use torque and angular momentum to calculate the acceleration of the system shown in the figure. The rotation axis is the axis of the pulley. The pulley is a disc with a radius of R and mass of M.
$m_{1} g-T_{1}=m_{1} a$
$R\left(T_{1}-T_{2}\right)=I \alpha, I=M R^{2} / 2 \quad T_{2}=m_{2} a$
$a=\frac{m_{1} g}{m_{1}+m_{2}+I / R^{2}}=\frac{m_{1} g}{m_{1}+m_{2}+M / 2}$
$L=I \omega+R m_{2} v+R m_{1} v, v=R \omega$

CONTENTS

1. Vector Product
2. Angular Momentum
3. Conservation of Angular Momentum
4. The Motion of Gyroscopes and Tops
5. Quantization of Angular Momentum

3. CONSERVATION OF ANGULAR MOMENTUM

Total Angular Momentum

$$
\vec{L}_{\text {system }}=\vec{L}_{\text {orbital }}+\vec{L}_{\text {self rotation(spin) }}
$$

If $\vec{\tau}_{n e t}=0$, the angular momentum is conserved. $\Delta \vec{L}=0$

$$
\begin{aligned}
& \vec{L}=L_{x} \hat{\imath}+L_{y} \hat{\jmath}+L_{z} \hat{k}=\vec{r} \times \vec{p}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right| \\
& L_{x}=y p_{z}-z p_{y} \\
& L_{y}=z p_{x}-x p_{z} \\
& L_{z}=x p_{y}-y p_{x}=m\left(x v_{y}-y v_{x}\right)
\end{aligned}
$$

3. CONSERVATION OF ANGULAR MOMENTUM

Example: A man is sitting on a stool that can rotate freely about a vertical axis. The man, initially at rest, is holding a bicycle wheel whose rotational inertia about its central axis is $1.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. The wheel is rotating at an angular speed of $3.9 \mathrm{rev} / \mathrm{s}$; as seen from overhead, the rotation is counterclockwise. The man with rotational inertia 6.8 $\mathrm{kg} \cdot \mathrm{m}^{2}$ now inverts the wheel so that, as seen from overhead, it is rotating clockwise. What's the angular speed of the man?

$$
\begin{aligned}
& L_{\text {wheel }, i}+L_{m, i}=L_{\text {wheel }, f}+L_{m, f} \\
& I_{\text {wheel }} \omega_{\text {wheel }}+0=-I_{\text {wheel }} \omega_{\text {wheel }}+I_{m} \omega_{m} \\
& 1.2 \times(3.9 \times 2 \pi)=-1.2 \times(3.9 \times 2 \pi)+6.8 \times \omega_{m} \\
& \omega_{m}=1.38\left(\frac{\mathrm{rev}}{\mathrm{~s}}\right)=8.67\left(\frac{\mathrm{rad}}{\mathrm{~s}}\right)
\end{aligned}
$$

3. CONSERVATION OF ANGULAR MOMENTUM

Example: Four thin, uniform rods, each of mass M and length $\mathrm{d}=0.5 \mathrm{~m}$, are rigidly connected to a vertical axle to form a turnstile. The turnstile rotates clockwise about the axle, which is attached to a floor, with initial angular velocity $\omega_{i}=-2.00 \mathrm{rad} / \mathrm{s}$. A mud ball of mass $\mathrm{m}=\mathrm{M} / 3$ and initial speed $v_{i}=12 \mathrm{~m} / \mathrm{s}$ is thrown along the path shown and sticks to the end of one rod. What is the final angular velocity of the ball-turnstile system?
$L_{t, i}+L_{b, i}=L_{t+b, f}$
$I_{t}=4\left[\frac{M}{12} d^{2}+M\left(\frac{d}{2}\right)^{2}\right]=\frac{4 M d^{2}}{3}$
$\frac{4}{3} M d^{2}(-2.00)+\frac{d}{2} \frac{M}{3}(12)=\left(\frac{4}{3} M d^{2}+\frac{M}{3} d^{2}\right) \omega_{f}$
$\omega_{f}=\frac{-\frac{8 d}{3}+2}{5 d / 3}=\frac{2 / 3}{5 / 6}=0.8(\mathrm{rad} / \mathrm{s})$

4. THE MOTION OF GYROSCOPES AND TOPS

The Top Motion - Translation, Rotation, Precession

Precession Frequency

$$
\vec{\tau}=\vec{R} \times(M \vec{g}), \tau=R M g \sin \theta
$$

$\vec{\tau}=\frac{d}{d t} \vec{L} \quad d \vec{L}=\vec{\tau} d t \quad|d \vec{L}|=R M g \sin \theta d t$
$d \varphi=\frac{|d \vec{L}|}{|\vec{L}| \sin \theta}=\frac{R M g}{L} d t$
$\omega_{p}=\frac{d \varphi}{d t}=\frac{R M g}{L}=\frac{R M g}{I \omega}$

4. THE MOTION OF GYROSCOPES AND TOPS

Example: A particle of mass m moves with speed v_{0} in a circle of radius r_{0} on a frictionless tabletop. The particle is attached to a string that passes through a hole in the table. The string is slowly pulled downward so that the particle moves in a small circle of radius r_{1}. (a) Find its speed on the circle of radius r_{1}. (b) Find the tension when the particle is moving in a circle of radius r. (c) Calculate the work done on the particle by the tension.

$$
\tau_{\text {net }}=0
$$

(a) $L_{i}=L_{f}, r_{0} m v_{0}=r_{1} m v_{1}, v_{1}=\frac{r_{0} v_{0}}{r_{1}}$
(b) $\quad v=\frac{r_{0} v_{0}}{r} \quad T=m a_{r}=m \frac{v^{2}}{r}=\frac{m r_{0}^{2} v_{0}^{2}}{r^{3}}$
(c) $\quad W=\int_{r_{0}}^{r}\left(-\frac{m r_{0}^{2} v_{0}^{2}}{r^{3}} \hat{r}\right) \cdot(d r \hat{r})=\frac{m r_{0}^{2} v_{0}^{2}}{2}\left(\frac{1}{r^{2}}-\frac{1}{r_{0}^{2}}\right)$

5. QUANTIZATION OF ANGULAR MOMENTUM

The Matter Wave Concept:

All particle motion can be described by wave like $A \sin (k x-\omega t)$.
The orbital motion of a particle strictly comply with the Wilson-
Sommerfeld quantization rule:

$$
\begin{aligned}
& k=\frac{2 \pi}{\lambda}, \quad \oint k d s=n(2 \pi) \\
& k=\frac{p}{\hbar} \quad \oint \frac{p}{\hbar} d s=n(2 \pi) \\
& 2 \pi r \frac{p}{\hbar}=2 \pi n \Rightarrow p r=m v r=L=n \hbar
\end{aligned}
$$

It gives the quantization of angular momentum for the electron in the hydrogen atom. (Bohr's model of the hydrogen atom)

5. QUANTIZATION OF ANGULAR MOMENTUM

Example: Consider an oxygen molecule rotating on the xy plane about the z axis. The rotation axis passes through the center of the molecule, perpendicular to its length. The mass of each oxygen atom is $2.66 \times 10^{-26} \mathrm{~kg}$, and the average separation between the two atoms is $\mathrm{d}=1.21 \times 10^{-10} \mathrm{~m}$. Consider the quantization nature, please find the lowest angular speed.
$I=\sum m_{i} r_{i}^{2}=2 \times 2.66 \times 10^{-26} \times\left(0.605 \times 10^{-10}\right)^{2}$

$$
I=1.95 \times 10^{-46}\left(\mathrm{~kg} \mathrm{~m}^{2}\right)
$$

$$
I \omega=1 \cdot \hbar, \quad \omega=\frac{\hbar}{I}=5.41 \times 10^{11}(\mathrm{rad} / \mathrm{s})
$$

ACKNOWLEDGEMENT

國立交通大學理學院
自主愛學習計畫

