Chapter 12
 Static Equilibrium \＆ Elasticity－I

簡紋濱
國立交通大學 理學院 電子物理系

CONTENTS

1. The Rigid Body in Equilibrium
2. The Center of Gravity
3. Examples of Rigid Body in Equilibrium
4. Elastic Properties of Solids

1. THE RIGID BODY IN EQUILIBRIUM

The Required Conditions for Equilibrium:

1. The net external force acting on the body is zero.

$$
\sum \vec{F}_{i}=0
$$

2. The net external torque about any point is zero.

$$
\sum \vec{\tau}_{i}=0
$$

The momentum is conserved.

$$
\vec{F}_{\text {net }}=0 \rightarrow \frac{d \vec{p}}{d t}=0 \rightarrow \vec{p}=\text { const }
$$

The angular momentum is conserved.

$$
\vec{\tau}_{\text {net }}=0 \rightarrow \frac{d \vec{L}}{d t}=0 \rightarrow \vec{L}=\text { const }
$$

2. THE CENTER OF GRAVITY

The Center of Gravity

$$
\vec{r}_{\text {COM }}=\frac{\sum m_{i} \vec{r}_{i}}{\sum \boldsymbol{m}_{i}} \quad \vec{r}_{\text {COG }}=\frac{\sum m_{i} g_{i} \vec{r}_{i}}{\sum \boldsymbol{m}_{i} g_{i}}
$$

If the gravity acceleration is the same for all elements in the body, the COG of the body is coincident with its COM.

$$
\begin{aligned}
& \vec{r}_{C O G}=\frac{\sum m_{i} g_{i} \vec{r}_{i}}{\sum m_{i} g_{i}}=\frac{\sum m_{i} g \vec{r}_{i}}{\sum m_{i} g}=\frac{\sum m_{i} \vec{r}_{i}}{\sum m_{i}}=\vec{r}_{C O M} \\
& z_{C O G}=\frac{\sum m_{i} g_{i} z_{i}}{\sum m_{i} g_{i}}=\frac{\int z g d m}{\int g d m}
\end{aligned}
$$

2. THE CENTER OF GRAVITY

Example: The gravity acceleration at a height z on the Earth surface is $g(z)=\left(\frac{R_{0}}{R_{0}+z}\right)^{2} g_{0}$, where R_{0} and g_{0} are the radius of the Earth and the gravitational acceleration on the Earth surface. Please calculate the center of gravity for a long uniform rod, which has a length of R_{0} and a mass per unit length of λ, standing vertically on the ground.

$$
\begin{aligned}
& d m=\lambda d z \quad z_{\text {COG }}=\frac{\int_{0}^{R_{0}}\left(\frac{R_{0}}{R_{0}+z}\right)^{2} g_{0} z \lambda d z}{\int_{0}^{R_{0}}\left(\frac{R_{0}}{R_{0}+z}\right)^{2} g_{0} \lambda d z} \\
& \int_{0}^{R_{0}}\left(\frac{R_{0}}{R_{0}+z}\right)^{2} g_{0} \lambda d z=R_{0}^{2} g_{0} \lambda\left[-\frac{1}{R_{0}+z}\right]_{0}^{R_{0}}=R_{0}^{2} g_{0} \lambda\left(-\frac{1}{2 R_{0}}+\frac{1}{R_{0}}\right)=\frac{R_{0} g_{0} \lambda}{2} \\
& \int_{0}^{R_{0}}\left(\frac{R_{0}}{R_{0}+z}\right)^{2} z g_{0} \lambda d z=R_{0}^{2} g_{0} \lambda \int_{0}^{R_{0}}\left(\frac{1}{z+R_{0}}-\frac{R_{0}}{\left(z+R_{0}\right)^{2}}\right) d z=R_{0}^{2} g_{0} \lambda(\ln 2-1 / 2) \\
& z_{\text {COG }}=0.386 R_{0} \neq R_{0} / 2
\end{aligned}
$$

3. EXAMPLES OF RIGID BODY IN EQUILIBRIUM

Static Equilibrium, At Rest, $\sum \vec{F}_{i}=0, \sum \vec{\tau}_{i}=0$ about any point
Example: A uniform horizontal beam of length 8 m and weight 200 N is attached to a wall by a pin connection. Its far end is supported by a cable that makes an angle of 60° with the horizontal. If a $600-\mathrm{N}$ man stands 2 m from the wall, find the tension in the cable and the force exerted by the wall on the beam.
zero net torque: $8 T \sin 60^{\circ}=4 \times 200+2 \times 600$

$$
\begin{aligned}
& T=289(\mathrm{~N}) \\
& T \cos 60^{\circ}+F_{x}=0 F_{x}=-145(\mathrm{~N}) \\
& F_{y}+289 \sin 60^{\circ}-200-600=0 \\
& F_{y}=550(\mathrm{~N})
\end{aligned}
$$

3. EXAMPLES OF RIGID BODY IN EQUILIBRIUM

Example: A uniform ladder of length l and mass m rests against a smooth, vertical wall. If the coefficient of static friction between ladder and the ground is $\mu_{s}=0.4$, find the minimum angle $\theta_{\text {min }}$ such that the ladder does not slip.

$$
\begin{aligned}
& N_{g}=m g \\
& N_{w}=f_{s}=N_{g} \mu_{s}=0.4 m g \\
& l N_{w} \sin \theta \geq \frac{l}{2} m g \sin \left(90^{0}-\theta\right) \\
& l(0.4 m g) \sin \theta \geq \frac{l}{2} m g \cos \theta \\
& \tan \theta \geq 1.25 \\
& \theta \geq \theta_{\text {min }}=51^{0}
\end{aligned}
$$

3. EXAMPLES OF RIGID BODY IN EQUILIBRIUM

Example: A wheel of mass M and radius R rests on a horizontal surface against a step of height $\mathrm{h}(\mathrm{h}<\mathrm{R})$. The wheel is to be raised over the step by a horizontal force F applied to the axle of the wheel as shown. Find the minimum force $F_{\min }$ necessary to raise the wheel over the step.

$$
\begin{aligned}
& F(R-h) \geq M g\left(\sqrt{R^{2}-(R-h)^{2}}\right) \\
& F \geq F_{\text {min }}=\frac{M g\left(\sqrt{R^{2}-(R-h)^{2}}\right)}{R-h}
\end{aligned}
$$

3. EXAMPLES OF RIGID BODY IN EQUILIBRIUM

Stability

$$
\begin{aligned}
& H_{1} F_{1} \geq \frac{W_{1}}{2} M g \\
& F_{1, \text { min }}=\frac{W_{1} M g}{2 H_{1}} \\
& F_{2, \text { min }}=\frac{W_{2} M g}{2 H_{2}}>F_{1, \text { min }}
\end{aligned}
$$

Block 2 is more stable.

Indeterminate Equilibrium for Some Structures

CONTENTS

1. The Rigid Body in Equilibrium
2. The Center of Gravity
3. Examples of Rigid Body in Equilibrium
4. Elastic Properties of Solids

4. ELASTIC PROPERTIES OF SOLIDS

Stress: Deforming force per unit area, stress $=F / A$
Strain: Unit Deformation, strain $=\Delta L / L$
Elastic Modulus: stress / strain
Young's Modulus - Elasticity in Length

$$
Y=\frac{\text { tensile stress }}{\text { tensile strain }}=\frac{F / A}{\Delta L / L}
$$

Shear Modulus - Elasticity of Shape

$$
S=\frac{\text { shear stress }}{\text { shear strain }}=\frac{F / A}{\Delta x / L}
$$

shear strain: $\frac{\Delta x}{L}=\tan \theta$

4. ELASTIC PROPERTIES OF SOLIDS

Bulk Modulus - Volume Elasticity

$$
B=\frac{\text { volume stress }}{\text { volume strain }}=\frac{\Delta F / A}{\Delta V / V}
$$

Material	Young's Modulus ($\mathrm{N} / \mathrm{m}^{2}$)	Shear Modulus ($\mathrm{N} / \mathrm{m}^{2}$)	Bulk Modulus ($\mathrm{N} / \mathrm{m}^{2}$)
Steel	20×10^{10}	8.4×10^{10}	6×10^{10}
Copper	11×10^{10}	4.2×10^{10}	14×10^{10}
Aluminum	7.0×10^{10}	2.5×10^{10}	5.0×10^{10}
Glass	6.5×10^{10}	2.6×10^{10}	5.0×10^{10}
Concrete	1.7×10^{10}	2.1×10^{10}	

4. ELASTIC PROPERTIES OF SOLIDS

Example: A structural steel rod has a radius R of 9.5 mm and a length L of $81 \mathrm{~cm} . \mathrm{A} 62 \mathrm{kN}$ force stretches it along its length. What are the stress on the rod and the elongation and strain of the rod?

$$
\begin{aligned}
& \text { stress: } \frac{F}{A}=\frac{62000}{\pi(0.0095)^{2}}=2.2 \times 10^{8}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \\
& Y_{\text {steel }}=20 \times 10^{10}=\frac{\text { stress }}{\text { strain }} \\
& \text { strain }=\frac{\Delta L}{L}=\frac{2.2 \times 10^{8}}{20 \times 10^{10}}=1.1 \times 10^{-3} \\
& \Delta L=1.1 \times 10^{-3} L=0.089(\mathrm{~cm})
\end{aligned}
$$

4. ELASTIC PROPERTIES OF SOLIDS

Example: A solid copper sphere is initially surrounded by air, and the air pressure exerted on it is $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (normal atmosphere pressure). The sphere is lowered into the ocean to a depth where pressure is $2.0 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$. The volume of the sphere in air is $0.50 \mathrm{~m}^{3}$. By how much does this volume change once the sphere is submerged?

$$
\begin{aligned}
& B_{C u}=14 \times 10^{10}=\frac{\left(2.0 \times 10^{7}-1.0 \times 10^{5}\right)}{\Delta V / 0.5} \\
& \Delta V=7.1 \times 10^{-5}\left(\mathrm{~m}^{3}\right)
\end{aligned}
$$

ACKNOWLEDGEMENT

國立交通大學理學院
自主愛學習計畫

