Chapter 22 Electric Fields

Physics II - Part I
Wen-Bin Jian
Department of Electrophysics, National Chiao Tung University

Discovery of Charges

History

0600 BC - Thales of Miletus (Greek)
The properties of amber are changed when rubbed. Shows power to attract and repel straws and dry leaves.

0321 BC - Theophrastus (Greek)
0070 AD - Pliny The Elder (Greek)
1600 AD - William Gilbert (Englishman)
Dry air is better to generate electrify substances.

1745 AD - Ewald G. von Kleist (German), Prof. Pieter van Musschenbroek (Dutch)

Leyden jar was invented.

http://www.codecheck. com/cc/LeydenJar.html

Discovery of Charges

History

https://www.awesomestories.com/asset/view/LIGHTNI NG-in-a-BOTTLE

1752 AD - Benjamin Franklin (American) Kite experiment, lightning experiment

1750 AD - Benjamin Franklin (American) Choosing the positive electricity
https://www-spof.gsfc.nasa.gov/Education/woppos.html

1785 AD - Charles Coulomb (French) torsion balance, published 7 papers

1798 AD - Henry Cavendish (British) torsion balance, gravitational force not published work and discovered by James Maxwell in 1879

Electron affinity of an atom or a molecule: $X_{g}+e^{-} \rightarrow X_{g}^{-}$.
For example, the fluorine gas atom: $F_{g}+e^{-} \xrightarrow{-328 \mathrm{~kJ} / \mathrm{mol}} F_{g}^{-}$.
Electron affinity of a bulk: $-\left(E_{\text {Vacuum }}-E_{C}\right)$

Energy Band Diagram Introduced

Work function of a bulk: $E_{V a c u u m}-E_{\text {Fermi Level }}$

Electrifying - Charge Transfer
The concept of grounded - connected to the Earth:

Repulsive Forces
 Between
 Charges of Same-Polarity

The concept of zero electric field inside the conductor:

The concept of inductive electrifying:

Definition of charge unit: One Coulomb is the total charge collected from the current of one Ampere for one second.
Definition of current unit: One Ampere is the current in both of the two parallel conducting wires separated for 1 m in vacuum that generates a force per unit length of 2×10^{-7} N / m.
Charge quantization: There is one single electron in one neutral hydrogen atom. $1 e=$ $1.602 \times 10^{-19} \mathrm{C}$

Unit of Charges

Physical Properties of Charges

Charge conservation: If one electron of charge $-e$ is removed from the neutral hydrogen atom, the hydrogen atom is ionized with a charge of $+e$.

$$
2 \mathrm{H}^{+}+\mathrm{O}^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Charge Conservation

Current flow model: The current flow is not the drifting process of charge carriers. It is more like information transmission. You can imagine a theme of the sitters changing their seats.

The Law for Static Electric Charges

Displacement vectors:

$$
\vec{r}_{A B}=\vec{r}_{A O}-\vec{r}_{B O}
$$

The observer sits at B to look at A.
The force exerted on B by A is $\vec{F}_{A B}$. Coulomb's Law:

Coulomb's Law

$$
\vec{F}_{B A}=\frac{k q_{A} q_{B}}{r_{A B}^{2}} \hat{r}_{A B}
$$

where $k=1 / 4 \pi \varepsilon_{0}$ is $8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.
Here ε_{0} is the permittivity of vacuum. The permittivity is a measure of a substance to resist the electric field.

Natural Distance Dependency of The Coulomb Law
The inverse square law confirms zero net electric forces inside a metal box.
The Law of

$$
\begin{aligned}
& \Delta Q_{1}=\sigma r_{1}^{2} \Delta \Omega \\
& F_{1 q}=\frac{k q \Delta Q_{1}}{r_{1}^{2}}=k q \sigma \Delta \Omega \\
& \Delta Q_{2}=\sigma r_{2}^{2} \Delta \Omega \\
& F_{2 q}=\frac{k q \Delta Q_{2}}{r_{2}^{2}}=k q \sigma \Delta \Omega=F_{1 q} \\
& F_{n e t}=0
\end{aligned}
$$ Inverse Square of Distance

The Concept of Field

From Electric Force to Electric Field

For a configuration of charges in the space, we can calculate the pulling force if we put the other charge (test charge) in the space. The force is proportional to the test charge.

\bullet
Even though you do not put the test charge in the space, the "field" to produce the force on the test charge still works in the space.

If you move the source charge to a new position, the force of charges at new positions will be felt by the test charge after a time of .The field signal transmit at the speed of light.
(1) \ominus

(3)

(4)

Coulomb's Law for Electric Fields

Coulomb's force for the test charge:

Direction and Magnitude of Electric Field

$$
\vec{F}_{Q q}=\frac{k q Q}{r^{2}} \hat{r}
$$

$\vec{E}_{Q q}=\frac{\vec{F}_{Q q}}{q}=\frac{k Q}{r^{2}} \hat{r}$
$\vec{E}_{Q}=\frac{k Q}{r^{2}} \hat{r}$

Unit of electric field: $1 \mathrm{~N} / \mathrm{C}=1 \mathrm{~V} / \mathrm{m}$
Net electric field for an observer at the origin:
$\vec{E}_{n e t}=\sum_{i=1}^{N} \frac{k q_{i}}{r_{i}^{2}} \hat{r}_{o i}$

Electric Fields	$\mathrm{N} / \mathrm{C}, \mathrm{V} / \mathrm{m}$
in conductors	$1-10^{-2}$
bulb with tungsten wires	10^{3}
in lightning bolt	10^{4}
operation of transistor	10^{6}
at electron in H atom	10^{12}

Mapping of Electric Field

Electric Field

 LinesElectric field lines start from positive charges and end on negative ones.

The lines are uniformly spaced entering or leaving a point charge.

The number of lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the charge.

Mapping of Electric Field

The density of electric field lines is proportional to the magnitude of the local electric field.

At large distances from a system of non-zero total charges, the field lines look as if they came from a single point charge.

Electric field lines do not cross each other.

Number of "Free" Electrons in Metal

Assume that one Al atom contributes three free charges in the solid. The density and atomic weight of Al bulk are $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. and 27.0 $\mathrm{g} / \mathrm{mol}$. What is the total free charge in an Al lump with a volume of 1 cm ${ }^{3}$?

The mass of the Al lump is:

Examples

$$
m=V d=2.7 \mathrm{~g}
$$

The number of electrons is:

$$
3 \times \frac{2.7}{27} \times 6.02 \times 10^{23}=1.8 \times 10^{23}
$$

The total charge is:

$$
1.602 \times 10^{-19} \times 1.8 \times 10^{23}=2.9 \times 10^{4} \mathrm{C}
$$

The Magnitude of Coulomb's Force in Atoms
An electron is orbiting around a proton with a radius of $0.53 \AA ̊$ in a hydrogen atom. Please evaluate the Coulomb force between the electron and the proton.

Coulomb's force gives us

$$
F=\frac{k q_{1} q_{2}}{r^{2}}=-8.99 \times 10^{9} \frac{\left(1.602 \times 10^{-19}\right)^{2}}{\left(0.53 \times 10^{-10}\right)^{2}}=-8.21 \times 10^{-8} \mathrm{~N}
$$

The Ratio Between Coulomb's and Gravitational Forces
Please calculate the ratio between Coulomb's and gravitational forces of an electron in an hydrogen atom. The orbiting radius is $0.53 \AA$.

The ratio is

Examples

$$
\begin{aligned}
& \frac{F_{C}}{F_{G}}=\frac{\frac{k q_{1} q_{2}}{r^{2}}}{\frac{G m_{1} m_{2}}{r^{2}}}=\frac{k q_{1} q_{2}}{G m_{1} m_{2}} \\
& \frac{F_{C}}{F_{G}}=\frac{8.99 \times 10^{9}\left(1.602 \times 10^{-19}\right)^{2}}{\left(6.67 \times 10^{-11}\right)\left(1.67 \times 10^{-27}\right)\left(9.11 \times 10^{-31}\right)} \\
& \frac{F_{C}}{F_{G}}=2.27 \times 10^{39}
\end{aligned}
$$

Examples

Three charged particles are placed on the x-axis. One particle of charge q_{1} is placed at the origin and another particle of charge q_{2} is placed at $x=l$. Where can the other particle of charge q_{3} be placed with a zero net force between the first and the second particles?

Let the particle of charge q_{3} be placed at a distance x away from the origin.

$$
\begin{aligned}
& F_{13}=F_{23} \rightarrow \frac{k q_{1} q_{3}}{x^{2}}=\frac{k q_{2} q_{3}}{(l-x)^{2}} \\
& q_{1}(l-x)^{2}=q_{2} x^{2} \rightarrow\left(q_{1}-q_{2}\right) x^{2}-2 q_{1} l x+q_{1} l^{2}=0 \\
& x=\frac{q_{1} \pm \sqrt{q_{1} q_{2}}}{\left(q_{1}-q_{2}\right)} l \rightarrow x_{1}=\frac{\sqrt{q_{1}}}{\sqrt{q_{1}}+\sqrt{q_{2}}}, x_{2}=\frac{\sqrt{q_{1}}}{\sqrt{q_{1}-\sqrt{q_{2}}}}
\end{aligned}
$$

Total Electric Field

Examples

Three charged particles are placed on the x-axis. One particle of charge q_{1} is placed at the origin and the other particle of charge q_{2} is placed at $x=l$. Please estimate the electric field between the two particles at a distance x away from the origin

$$
\vec{E}=\frac{k q_{1}}{x^{2}} \hat{\imath}-\frac{k q_{2}}{(l-x)^{2}} \hat{\imath}
$$

Experience The "Vector" Feature of The Electric Field
Two particles of charges 5 nC and 10 nC is placed at $x=0$ and $x=3 \mathrm{~m}$, respectively on the x-axis. What is the electric field observed at $y=2$ m on the y-axis?

Examples

$$
\begin{aligned}
& \vec{E}=9 \times 10^{9} \frac{10 \times 10^{-9}}{\left(2^{2}+3^{2}\right)}\left(-\frac{3}{\sqrt{2^{2}+3^{2}}} \hat{\imath}+\frac{2}{\sqrt{2^{2}+3^{2}}} \hat{\jmath}\right) \\
& +9 \times 10^{9} \frac{5 \times 10^{-9}}{2^{2}} \hat{\jmath} \\
& \vec{E}=-5.76 \hat{\imath}+15.1 \hat{\jmath}(\mathrm{~N} / \mathrm{C})
\end{aligned}
$$

Debut of "Electric Dipole"

A charge $+q$ is placed at $x=a$ on the x-axis and a second charge $-q$ is placed at $x=-a$. (a) Find the electric field on the x-axis at an arbitrary point x, where $x>a$. (b) What is the limit result of $x \gg a$?

Examples

(a)
$E=-\frac{k q}{(x+a)^{2}}+\frac{k q}{(x-a)^{2}}$
(b)

$$
\begin{aligned}
& E=k q \frac{-(x-a)^{2}+(x+a)^{2}}{\left(x^{2}-a^{2}\right)^{2}} \\
& E=k q \frac{4 x a}{\left(x^{2}-a^{2}\right)^{2}} \\
& x \gg a \rightarrow E \cong k q \frac{4 x a}{x^{4}}=2 k \frac{2 q a}{x^{3}} \quad \text { dipole moment } p=2 q a
\end{aligned}
$$

Cathode Ray Tube

Examples

An electron of charge $-e$ and mass m_{e} is moving on the central axis with a constant velocity v_{0}. When it is exerted by a perpendicular, uniform electric field E_{0} for a distance l along the x-axis, what is its deflection distance along the y-axis?
Estimate the time to travel through the region of uniform electric field:

$$
\begin{aligned}
& t_{\text {travel }}=\frac{l}{v_{0}} \\
& \vec{a}=-\frac{e E_{0}}{m_{e}} \hat{\jmath}
\end{aligned}
$$

$y_{\text {deflection }}=-\frac{1}{2} \frac{e E_{0}}{m_{e}}\left(\frac{l}{v_{0}}\right)^{2}$

Introduction to The Mathematical Tools of Integration for Calculation of Total Electric Fields

Mathematical Calculation

Total charge of $Q(C)$ is uniformly distributed on 1. a wire, 2. a plane, or 3. in a volume.

The charge per unit length is defined as $\lambda, \lambda=Q / l$, where l is the length of the wire.

The charge per unit area is defined as $\sigma, \sigma=Q / A$, where A is the area of the plane.

The charge per unit volume is defined as $\varrho, \varrho=Q / V$, where V is the volume of the object.

Introduction to The Mathematical Tools of Integration for Calculation of Total Electric Fields

Mathematical

 CalculationUsing of integration (for example, to get the total charge back from a wire of length l)

$$
\begin{aligned}
& d q=\lambda d x, \int d q=\int_{0}^{l} \lambda d x \\
& =\frac{Q}{l} \int_{0}^{l} d x=\frac{Q}{l} l=Q
\end{aligned}
$$

Using integration to get the total charge back from a rectangle of an

$$
\begin{aligned}
& \text { area } a \times b . \\
& d q=\sigma d a=\sigma d x d y \\
& \int d q=\int_{0}^{b} \int_{0}^{a} \sigma d x d y \\
& =\frac{Q}{a b} \int_{0}^{b} \int_{0}^{a} d x d y=\frac{Q}{a b} a b=Q
\end{aligned}
$$

Total Electric Field of Line Charges
A rod of length l is charged with Q and placed on the axis as shown in the figure. Please calculate the electric field at the origin $(x=0)$.

$$
\begin{aligned}
\lambda & =\frac{Q}{l}, d q=\lambda d x, d \vec{E}=-\hat{x} \frac{k d q}{r^{2}} \\
\vec{E} & =-\hat{x} \int k \frac{d q}{r^{2}}=-\hat{x} k \int_{a}^{a+l} \frac{\lambda d x}{x^{2}} \\
\vec{E} & =-\hat{x} k \lambda\left[-\frac{1}{x}\right]_{x=a}^{x=a+l}=-\hat{x} k \lambda\left(-\frac{1}{a+l}+\frac{1}{a}\right) \\
& =-\hat{x} k \lambda \frac{l}{a(a+l)}=-\hat{x} \frac{k Q}{a(a+l)}
\end{aligned}
$$

Examples

A ring of radius a is charged with Q and placed on the xy plane with its axis coincident with the z-axis as shown in the figure. Please calculate the electric field on the z-axis with a distance z_{0} above the origin.

According to symmetry, $E_{x}=E_{y}=0$

$$
\begin{aligned}
d \vec{E} & =\hat{z} \frac{k \lambda}{a^{2}+z_{0}^{2}} d s \frac{z_{0}}{\sqrt{a^{2}+z_{0}^{2}}} \quad d s=a d \theta \\
\vec{E} & =\hat{z} \int_{0}^{2 \pi} \frac{k \lambda z_{0}}{\left(a^{2}+z_{0}^{2}\right)^{3 / 2}} a d \theta=\hat{z} \frac{k 2 \pi a \lambda z_{0}}{\left(a^{2}+z_{0}^{2}\right)^{3 / 2}} \\
& =\hat{z} \frac{k Q z_{0}}{\left(a^{2}+z_{0}^{2}\right)^{3 / 2}}
\end{aligned}
$$

Line Charge, Observer on The Axis of The Line Charge
A rod of length l is uniformly charged with Q and placed on the axis as shown in the figure. Please calculate the electric field at x_{p}.

Examples

$$
\begin{aligned}
\lambda & =\frac{Q}{l}, d q=\lambda d x=\frac{Q}{l} d x \\
d \vec{E} & =\frac{k d q}{\left(x_{p}-x\right)^{2}} \hat{x}=\frac{k \lambda d x}{\left(x_{p}-x\right)^{2}} \hat{x} \\
\vec{E} & =\hat{x} \int_{-l / 2}^{l / 2} \frac{k \lambda d x}{\left(x_{p}-x\right)^{2}} \hat{x} k \lambda \int_{-l / 2}^{l / 2} \frac{d\left(x-x_{p}\right)}{\left(x-x_{p}\right)^{2}} \\
& =\hat{x} k \lambda\left[-\frac{1}{x-x_{p}}\right]_{x=-l / 2}^{x=l / 2}=\hat{x} k \lambda\left(-\frac{1}{\frac{l}{2}-x_{p}}+\frac{1}{-\frac{l}{2}-x_{p}}\right) \\
& =\hat{x} k \lambda\left(\frac{1}{x_{p}-\frac{l}{2}}-\frac{1}{x_{p}+\frac{l}{2}}\right)=\frac{\hat{x} k \lambda l^{2}}{x_{p}^{2}-\frac{l^{2}}{4}}
\end{aligned}
$$

Line Charge, Off The Axis of The Line Charge
A rod of length l is charged with Q and placed on the x-axis as shown in the figure. Please calculate the electric field at the y-axis with a distance of y_{0} away from the origin.

$$
d \vec{E}=\frac{k d q}{r^{2}} \hat{r}
$$

Examples

$$
\begin{aligned}
& =\frac{k \lambda d x}{x^{2}+y_{0}^{2}}\left(-\hat{x} \frac{x}{\sqrt{x^{2}+y_{0}^{2}}}+\hat{y} \frac{y_{0}}{\sqrt{x^{2}+y_{0}^{2}}}\right) \\
\vec{E} & =k \lambda \int_{a}^{a+l}\left(-\hat{x} \frac{x}{\left(x^{2}+y_{0}^{2}\right)^{\frac{3}{2}}}+\hat{y} \frac{y_{0}}{\left(x^{2}+y_{0}^{2}\right)^{\frac{3}{2}}}\right) d x
\end{aligned}
$$

$$
\text { Let } \frac{x}{y_{0}}=\tan \theta \text { and } \frac{a}{y_{0}}=\tan \left(\theta_{1}\right), \frac{a+l}{y_{0}}=\tan \left(\theta_{2}\right)
$$

Line Charge, Off The Axis of The Line Charge

A rod of length l is charged with Q and placed on the x-axis as shown in the figure. Please calculate the electric field at the y-axis with a distance of y_{0} away from the origin.

$$
\begin{aligned}
x & =y_{0} \tan \theta \rightarrow d x=y_{0} \sec ^{2} \theta d \theta \\
\vec{E} & =k \lambda \int_{\theta_{1}}^{\theta_{2}}\left(-\hat{x} \frac{y_{0} \tan \theta}{y_{0}^{3} \sec ^{3} \theta}+\hat{y} \frac{y_{0}}{y_{0}^{3} \sec ^{3} \theta}\right) y_{0} \sec ^{2} \theta d \theta \\
\vec{E} & =\frac{k \lambda}{y_{0}} \int_{\theta_{1}}^{\theta_{2}}(-\hat{x} \sin \theta+\hat{y} \cos \theta) d \theta \\
& =\frac{k \lambda}{y_{0}}[\hat{x} \cos \theta+\hat{y} \sin \theta]_{\theta=\theta_{1}}^{\theta=\theta_{2}} \\
& =\frac{k \lambda}{y_{0}}\left(\hat{x}\left(\cos \theta_{2}-\cos \theta_{1}\right)+\hat{y}\left(\sin \theta_{2}-\sin \theta_{1}\right)\right)
\end{aligned}
$$

A rod of length l is charged with Q and placed on the x-axis as shown in the figure. Please calculate the electric field at the y-axis with a distance of y_{0} away from the origin.

$$
\begin{aligned}
& \vec{E}=\frac{k \lambda}{y_{0}}\left(\hat{x}\left(\cos \theta_{2}-\cos \theta_{1}\right)+\hat{y}\left(\sin \theta_{2}-\sin \theta_{1}\right)\right) \\
& \tan \theta_{1}=-\frac{\infty}{y_{0}} \rightarrow \theta_{1}=-\frac{\pi}{2} \\
& \tan \theta_{2}=\frac{\infty}{y_{0}} \rightarrow \theta_{2}=\frac{\pi}{2} \\
& \vec{E}=\frac{k \lambda}{y_{0}}\left(\hat{x}\left(\cos \left(\frac{\pi}{2}\right)-\cos \left(-\frac{\pi}{2}\right)\right)+\hat{y}\left(\sin \left(\frac{\pi}{2}\right)-\sin \left(-\frac{\pi}{2}\right)\right)\right) \\
& \vec{E}=2 \frac{k \lambda}{y_{0}} \hat{y}
\end{aligned}
$$

Examples

Symmetrically Displaced Line Charge, Off The Axis

Examples

A rod of length l is charged with Q and placed on the x-axis as shown in the figure. Please calculate the electric field at the y-axis with a distance of y_{0} away from the origin.

$$
E_{x}=0 \rightarrow \lambda=\frac{\mathrm{Q}}{l}, d \vec{E}=\hat{y} \frac{k \lambda y_{0} d x}{\left(x^{2}+y_{0}^{2}\right)^{3 / 2}}, x=y_{0} \tan \theta
$$

$$
\begin{aligned}
& \vec{E}=\hat{y} 2 k \lambda \int_{0}^{\tan ^{-1}\left(l / 2 y_{0}\right)} \frac{y_{0}}{y_{0}^{3} \sec ^{3} \theta} y_{0} \sec ^{2} \theta d \theta \\
& \vec{E}=\hat{y} \frac{2 k \lambda}{y_{0}} \int_{0}^{\tan ^{-1}\left(l / 2 y_{0}\right)} \cos \theta d \theta \\
& \vec{E}=\hat{y} \frac{2 k \lambda}{y_{0}} \frac{d \vec{E}}{\sqrt{y_{0}^{2}+\frac{l^{2}}{4}}}
\end{aligned}
$$

Examples

A disk of radius R is charged with Q and placed on the xy plane with its axis coincident with the z-axis as shown in the figure. Please calculate the electric field on the z-axis with a distance z_{0} above the origin.

$$
\begin{aligned}
\sigma & =\frac{Q}{\pi R^{2}} \quad E_{x}=E_{y}=0 d \vec{E}=\hat{z} \frac{k(2 \pi r \sigma d r)}{r^{2}+z_{0}^{2}} \frac{z_{0}}{\sqrt{r^{2}+z_{0}^{2}}} \\
\vec{E} & =\hat{z} 2 \pi k \sigma z_{0} \int_{0}^{R} \frac{r d r}{\left(r^{2}+z_{0}^{2}\right)^{3 / 2}} \\
& =\hat{z} 2 \pi k \sigma z_{0}\left[-\frac{1}{\sqrt{r^{2}+z_{0}^{2}}}\right]_{r=0}^{r=R} \\
& =\hat{z} 2 \pi k \sigma z_{0}\left(\frac{1}{z_{0}}-\frac{1}{\sqrt{R^{2}+z_{0}^{2}}}\right)
\end{aligned}
$$

Charged Disc

Examples

A disk of radius R is charged with Q and placed on the xy plane with its axis coincident with the z-axis as shown in the figure. Please calculate the electric field on the z-axis with a distance z_{0} above the origin.
$\vec{E}=\hat{z} 2 \pi k \sigma z_{0}\left(\frac{1}{z_{0}}-\frac{1}{\sqrt{R^{2}+z_{0}^{2}}}\right)$
$\lim _{R \rightarrow \infty} \vec{E}(R)=\lim _{R \rightarrow \infty} \hat{z} 2 \pi k \sigma z_{0}\left(\frac{1}{z_{0}}-\frac{1}{\sqrt{R^{2}+z_{0}^{2}}}\right)$
$\lim _{R \rightarrow \infty} \vec{E}(R)=\hat{z} 2 \pi k \sigma$

